Cancer-associated fibroblasts(CAFs)are one of the most abundant stromal cells in the tumor microenvironment which mediate desmoplastic response and are the primary driver for an immunosuppressive microenvironment,lead...Cancer-associated fibroblasts(CAFs)are one of the most abundant stromal cells in the tumor microenvironment which mediate desmoplastic response and are the primary driver for an immunosuppressive microenvironment,leading to the failure of triple-negative breast cancer(TNBC)immunotherapy.Therefore,depleting CAFs may enhance the effect of immunotherapy(such as PD-L1 antibody).Relaxin(RLN)has been demonstrated to significantly improve transforming growth factor-β(TGF-β)induced CAFs activation and tumor immunosuppressive microenvironment.However,the short half-life and systemic vasodilation of RLN limit its in vivo efficacy.Here,plasmid encoding relaxin(pRLN)to locally express RLN was delivered with a new positively charged polymer named polymeric metformin(PolyMet),which could increase gene transfer efficiency significantly and have low toxicity that have been certified by our lab before.In order to improve the stability of pRLN in vivo,this complex was further formed lipid poly-γ-glutamic acid(PGA)/PolyMetpRLN nanoparticle(LPPR).The particle size of LPPR was 205.5±2.9 nm,and the zeta potential was+55.4±1.6 mV.LPPR displayed excellent tumor penetrating efficacy and weaken proliferation of CAFs in 4T1luc/CAFs tumor spheres in vitro.In vivo,it could reverse aberrantly activated CAFs by decreasing the expression of profibrogenic cytokine and remove the physical barrier to reshape the tumor stromal microenvironment,which enabled a 2.2-fold increase in cytotoxic T cell infiltration within the tumor and a decrease in immunosuppressive cells infiltration.Thus,LPPR was observed retarded tumor growth by itself in the 4T1 tumor bearing-mouse,and the reshaped immune microenvironment further led to facilitate antitumor effect when it combined with PD-L1 antibody(aPD-L1).Altogether,this study presented a novel therapeutic approach against tumor stroma using LPPR to achieve a combination regimen with immune checkpoint blockade therapy against the desmoplastic TNBC model.展开更多
Several crucial stromal cell populations regulate hematopoiesis and malignant diseases in bone marrow niches.Precise regulation of these cell types can remodel niches and develop new therapeutics.Multiple nanocarriers...Several crucial stromal cell populations regulate hematopoiesis and malignant diseases in bone marrow niches.Precise regulation of these cell types can remodel niches and develop new therapeutics.Multiple nanocarriers have been developed to transport drugs into the bone marrow selectively.However,the delivery efficiency of these nanotherapeutics into crucial niche cells is still unknown,and there is no method available for predicting delivery efficiency in these cell types.Here,we constructed a three-dimensional bone marrow niche composed of three crucial cell populations:endothelial cells(ECs),mesenchymal stromal cells(MSCs),and osteoblasts(OBs).Mimetic niches were used to detect the cellular uptake of three typical drug nanocarriers into ECs/MSCs/OBs in vitro.Less than 5%of nanocarriers were taken up by three stromal cell types,and most of themwere located in the extracellular matrix.Delivery efficiency in sinusoidal ECs,arteriole ECs,MSCs,and OBs in vivo was analyzed.The correlation analysis showed that the cellular uptake of three nanocarriers in crucial cell types in vitro is positively linear correlated with its delivery efficiency in vivo.The delivery efficiency into MSCs was remarkably higher than that into ECs and OBs,no matterwhat kind of nanocarrier.The overall efficiency into sinusoidal ECswas greatly lower than that into arteriole ECs.All nanocarriers were hard to be delivered into OBs(<1%).Our findings revealed that cell tropisms of nanocarriers with different compositions and ligand attachments in vivo could be predicted via detecting their cellular uptake in bone marrow niches in vitro.This study provided the methodology for niche-directed nanotherapeutics development.展开更多
Flapping-Wing Micro-Air Vehicles are likely to suffer from airflow perturbations.They can mimic the wing modulation of insects in airflow perturbations.However,our knowledge of wing modulation of insects to airflow pe...Flapping-Wing Micro-Air Vehicles are likely to suffer from airflow perturbations.They can mimic the wing modulation of insects in airflow perturbations.However,our knowledge of wing modulation of insects to airflow perturbations remains limited.Here,we subjected hoverflies to headwind and lateral gust perturbations and filmed their wing motions.Then,computational fluid dynamics was employed to estimate the effects of hoverflies’wing kinematic modulations.We also clipped off the antennae of hoverflies to test whether the wing kinematic modulations were different.Results show that hoverflies increase the mean positional angle and modulate the deviation angle to make the wing tip paths of upstroke and downstroke close to compensate for the pitch moment perturbations in the headwind gust.Hoverflies employ asymmetric responses in positional angle in the lateral gust.The stroke amplitude of the left(right)wing increases(decreases)and the mean positional angle of the left(right)wing decreases(increases)during the right lateral gust.Antennae have little effect on the wing kinematic modulations in the lateral gust.These asymmetric responses produce a roll moment,tilting the body to resist the side force generated by the gust.This is a typical helicopter model employed by hoverflies to alleviate the gust.These results provide insight into the remarkable capacity of hoverflies to contend with gusts and can also inspire the design of flapping-wing micro-air vehicles.展开更多
In individuals afflicted with hemophilia,characterized by a deficiency of coagulation factor VIII(FVIII),the occurrence of spontaneous recurrent intra-articular hemorrhage precipitates the emergence of hemophilic arth...In individuals afflicted with hemophilia,characterized by a deficiency of coagulation factor VIII(FVIII),the occurrence of spontaneous recurrent intra-articular hemorrhage precipitates the emergence of hemophilic arthropathy(HA).Although clotting factor replacement therapy reduces joint bleeding clinically,clotting factors need to be injected frequently due to the rapid diffusion of the drug.Hence,a novel drug delivery approach may be developed to improve the drug therapy.Platelet-derived extracellular vesicles(PEVs)are known to possess anti-inflammatory and hemostatic properties and could be used as a potential HA therapy.In this study,we constructed a PEV-LS@FVIII nanotherapeutic system by combining thioketal(TK),liposomes(LS),and FVIII to form the LS@FVIII complexes,and then hybridizing PEV with LS@FVIII.Our results demonstrated that PEVLS@FVIII could efficiently facilitate FVIII delivery and specifically target the injured knee joint.Both in vitro and in vivo studies showed a reduction in the M1 phenotype of macrophages and an enhancement of the M2 phenotype,compared to FVIII free control.Furthermore,PEV-LS@FVIII appeared to alleviate HA-induced cartilage damage.In conclusion,our findings demonstrate that PEV-LS@FVIII could delay the progression of HA by targeting bleeding joints,modulating macrophage polarization to suppress inflammation,and mitigating cartilage damage.展开更多
Up to 70% of patients with late-stage breast cancer have bone metastasis. Current treatment regimens for breast cancer bone metastasis are palliative with no therapeutic cure. Disseminated tumor cells(DTCs) colonize i...Up to 70% of patients with late-stage breast cancer have bone metastasis. Current treatment regimens for breast cancer bone metastasis are palliative with no therapeutic cure. Disseminated tumor cells(DTCs) colonize inside the osteogenic niches in the early stage of bone metastasis. Drug delivery into osteogenic niches to inhibit DTC colonization can prevent bone metastasis from entering its late stage and therefore cure bone metastasis. Here, we constructed a 50% DSS6 peptide conjugated nanoparticle to target the osteogenic niche. The osteogenic niche was always located at the endosteum with immature hydroxyapatite. Arsenic-manganese nanocrystals(around 14 nm) were loaded in osteogenic niche-targeted PEG-PLGA nanoparticles with an acidic environment-triggered arsenic release. Arsenic formulations greatly reduced 4 T1 cell adhesion to mesenchymal stem cells(MSCs)/preosteoblasts(pre-OBs) and osteogenic differentiation of osteoblastic cells. Arsenic formulations also prevented tumor cell colonization and dormancy via altering the direct interaction between 4 T1 cells and MSCs/pre-OBs.The chemotactic migration of 4 T1 cells toward osteogenic cells was blocked by arsenic in mimic 3 D osteogenic niche. Systemic administration of osteogenic niche-targeted arsenic nanoparticles significantly extended the survival of mice with 4 T1 syngeneic bone metastasis. Our findings provide an effective approach for osteogenic niche-specific drug delivery and suggest that bone metastasis can be effectively inhibited by blockage of tumor cell colonization in the bone microenvironment.展开更多
基金This work was funded by the Medical and Health Science and Technology Program of Zhejiang Province(2021KY813)the National Natural Science Foundation of China(82174095)the National Natural Science Foundation of Zhejiang Province(LZ22H290001).
文摘Cancer-associated fibroblasts(CAFs)are one of the most abundant stromal cells in the tumor microenvironment which mediate desmoplastic response and are the primary driver for an immunosuppressive microenvironment,leading to the failure of triple-negative breast cancer(TNBC)immunotherapy.Therefore,depleting CAFs may enhance the effect of immunotherapy(such as PD-L1 antibody).Relaxin(RLN)has been demonstrated to significantly improve transforming growth factor-β(TGF-β)induced CAFs activation and tumor immunosuppressive microenvironment.However,the short half-life and systemic vasodilation of RLN limit its in vivo efficacy.Here,plasmid encoding relaxin(pRLN)to locally express RLN was delivered with a new positively charged polymer named polymeric metformin(PolyMet),which could increase gene transfer efficiency significantly and have low toxicity that have been certified by our lab before.In order to improve the stability of pRLN in vivo,this complex was further formed lipid poly-γ-glutamic acid(PGA)/PolyMetpRLN nanoparticle(LPPR).The particle size of LPPR was 205.5±2.9 nm,and the zeta potential was+55.4±1.6 mV.LPPR displayed excellent tumor penetrating efficacy and weaken proliferation of CAFs in 4T1luc/CAFs tumor spheres in vitro.In vivo,it could reverse aberrantly activated CAFs by decreasing the expression of profibrogenic cytokine and remove the physical barrier to reshape the tumor stromal microenvironment,which enabled a 2.2-fold increase in cytotoxic T cell infiltration within the tumor and a decrease in immunosuppressive cells infiltration.Thus,LPPR was observed retarded tumor growth by itself in the 4T1 tumor bearing-mouse,and the reshaped immune microenvironment further led to facilitate antitumor effect when it combined with PD-L1 antibody(aPD-L1).Altogether,this study presented a novel therapeutic approach against tumor stroma using LPPR to achieve a combination regimen with immune checkpoint blockade therapy against the desmoplastic TNBC model.
基金support from the National Natural Science Foundation of China(81703713,82174095,82274364)Natural Science Foundation of Zhejiang Province grants(LZ23H290001,LZ22H290001)internal support from Zhejiang Chinese Medical University(2022GJYY011).
文摘Several crucial stromal cell populations regulate hematopoiesis and malignant diseases in bone marrow niches.Precise regulation of these cell types can remodel niches and develop new therapeutics.Multiple nanocarriers have been developed to transport drugs into the bone marrow selectively.However,the delivery efficiency of these nanotherapeutics into crucial niche cells is still unknown,and there is no method available for predicting delivery efficiency in these cell types.Here,we constructed a three-dimensional bone marrow niche composed of three crucial cell populations:endothelial cells(ECs),mesenchymal stromal cells(MSCs),and osteoblasts(OBs).Mimetic niches were used to detect the cellular uptake of three typical drug nanocarriers into ECs/MSCs/OBs in vitro.Less than 5%of nanocarriers were taken up by three stromal cell types,and most of themwere located in the extracellular matrix.Delivery efficiency in sinusoidal ECs,arteriole ECs,MSCs,and OBs in vivo was analyzed.The correlation analysis showed that the cellular uptake of three nanocarriers in crucial cell types in vitro is positively linear correlated with its delivery efficiency in vivo.The delivery efficiency into MSCs was remarkably higher than that into ECs and OBs,no matterwhat kind of nanocarrier.The overall efficiency into sinusoidal ECswas greatly lower than that into arteriole ECs.All nanocarriers were hard to be delivered into OBs(<1%).Our findings revealed that cell tropisms of nanocarriers with different compositions and ligand attachments in vivo could be predicted via detecting their cellular uptake in bone marrow niches in vitro.This study provided the methodology for niche-directed nanotherapeutics development.
基金This work was supported by a grant from the National Natural Science Foundation of China(11672028).
文摘Flapping-Wing Micro-Air Vehicles are likely to suffer from airflow perturbations.They can mimic the wing modulation of insects in airflow perturbations.However,our knowledge of wing modulation of insects to airflow perturbations remains limited.Here,we subjected hoverflies to headwind and lateral gust perturbations and filmed their wing motions.Then,computational fluid dynamics was employed to estimate the effects of hoverflies’wing kinematic modulations.We also clipped off the antennae of hoverflies to test whether the wing kinematic modulations were different.Results show that hoverflies increase the mean positional angle and modulate the deviation angle to make the wing tip paths of upstroke and downstroke close to compensate for the pitch moment perturbations in the headwind gust.Hoverflies employ asymmetric responses in positional angle in the lateral gust.The stroke amplitude of the left(right)wing increases(decreases)and the mean positional angle of the left(right)wing decreases(increases)during the right lateral gust.Antennae have little effect on the wing kinematic modulations in the lateral gust.These asymmetric responses produce a roll moment,tilting the body to resist the side force generated by the gust.This is a typical helicopter model employed by hoverflies to alleviate the gust.These results provide insight into the remarkable capacity of hoverflies to contend with gusts and can also inspire the design of flapping-wing micro-air vehicles.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LR23H270001 and LQ22H270006)National Natural Science Foundation of China(82274280 and 82305005).
文摘In individuals afflicted with hemophilia,characterized by a deficiency of coagulation factor VIII(FVIII),the occurrence of spontaneous recurrent intra-articular hemorrhage precipitates the emergence of hemophilic arthropathy(HA).Although clotting factor replacement therapy reduces joint bleeding clinically,clotting factors need to be injected frequently due to the rapid diffusion of the drug.Hence,a novel drug delivery approach may be developed to improve the drug therapy.Platelet-derived extracellular vesicles(PEVs)are known to possess anti-inflammatory and hemostatic properties and could be used as a potential HA therapy.In this study,we constructed a PEV-LS@FVIII nanotherapeutic system by combining thioketal(TK),liposomes(LS),and FVIII to form the LS@FVIII complexes,and then hybridizing PEV with LS@FVIII.Our results demonstrated that PEVLS@FVIII could efficiently facilitate FVIII delivery and specifically target the injured knee joint.Both in vitro and in vivo studies showed a reduction in the M1 phenotype of macrophages and an enhancement of the M2 phenotype,compared to FVIII free control.Furthermore,PEV-LS@FVIII appeared to alleviate HA-induced cartilage damage.In conclusion,our findings demonstrate that PEV-LS@FVIII could delay the progression of HA by targeting bleeding joints,modulating macrophage polarization to suppress inflammation,and mitigating cartilage damage.
基金financial support from the National Natural Science Foundation of China(81703713,81774011,and 81673607)Engineering Research Center of Clinical Functional Materials and Diagnosis&Treatment Devices of Zhejiang Province(WIBEK181001,China)+2 种基金Natural Science Foundation of Zhejiang Province grants(Y19H280001,China)China Postdoctoral Science Foundation(2020M672882,China)internal support from Zhejiang Chinese Medical University。
文摘Up to 70% of patients with late-stage breast cancer have bone metastasis. Current treatment regimens for breast cancer bone metastasis are palliative with no therapeutic cure. Disseminated tumor cells(DTCs) colonize inside the osteogenic niches in the early stage of bone metastasis. Drug delivery into osteogenic niches to inhibit DTC colonization can prevent bone metastasis from entering its late stage and therefore cure bone metastasis. Here, we constructed a 50% DSS6 peptide conjugated nanoparticle to target the osteogenic niche. The osteogenic niche was always located at the endosteum with immature hydroxyapatite. Arsenic-manganese nanocrystals(around 14 nm) were loaded in osteogenic niche-targeted PEG-PLGA nanoparticles with an acidic environment-triggered arsenic release. Arsenic formulations greatly reduced 4 T1 cell adhesion to mesenchymal stem cells(MSCs)/preosteoblasts(pre-OBs) and osteogenic differentiation of osteoblastic cells. Arsenic formulations also prevented tumor cell colonization and dormancy via altering the direct interaction between 4 T1 cells and MSCs/pre-OBs.The chemotactic migration of 4 T1 cells toward osteogenic cells was blocked by arsenic in mimic 3 D osteogenic niche. Systemic administration of osteogenic niche-targeted arsenic nanoparticles significantly extended the survival of mice with 4 T1 syngeneic bone metastasis. Our findings provide an effective approach for osteogenic niche-specific drug delivery and suggest that bone metastasis can be effectively inhibited by blockage of tumor cell colonization in the bone microenvironment.