Wettability is an important surface property that deserves to further explore the factors on its alteration.Series of bis-N-heterocyclic quaternary ammonium salts with different spacer length and N-heterocyclic headgr...Wettability is an important surface property that deserves to further explore the factors on its alteration.Series of bis-N-heterocyclic quaternary ammonium salts with different spacer length and N-heterocyclic headgroups(morpholinium(BMMB,BMMD and BMMH),piperidinium(BPMH)and piperazinium(BMPMH))have been synthesized and employed for altering the wettability of vermiculite and its derivates(Vts)treated by Li^(+)-saturated heating method.The results of X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),thermogravimetric analysis(TG-DTG),scanning electron microscopy(SEM)and N_(2)adsorption/desorption isotherms indicate that all of the bis-N-heterocyclic quaternary ammonium salts have been successfully inserted into the vermiculite layers,leading to the organic monolayer.The results of capillary rise tests combined with Lipophilic to Hydrophilic Ratio(LHR)values unveil the wettability alteration of the organo-Vts.As the layer charge decreases,the hydrophilicity of the organo-Vts gradually increases,which is probably caused by the decline in binding sites.As the result of the change in spacer length of modifier,the wetting properties of morpholinium-based organo-Vts change in order of BMMD-Vts>BMMH-Vts>BMMB-Vts,and difference in N-heterocyclic headgroups leads to the sequence of wettability:BMPMH-Vts>BPMH-Vts>BMMH-Vts.Layer charge of Vt,spacer length and the type of the N-heterocyclic headgroup of modifier have the synergistic effect on the regulation of the wettability.展开更多
For further understanding the wettability alteration induced by organic salts,series of bis-imidazolium salts(EBMI,TBMI,HBMI,OBMI and DBMI) were employed for investigating their adsorption behavior and wettability alt...For further understanding the wettability alteration induced by organic salts,series of bis-imidazolium salts(EBMI,TBMI,HBMI,OBMI and DBMI) were employed for investigating their adsorption behavior and wettability alteration on vermiculite(Vt) by experimental and theoretical studies.The characterization results indicated that all bis-imidazolium salts had been loaded on Vts.The adsorption results showed that EBMI,TBMI,HBMI,OBMI and DBMI on Vt reached equilibrium of 0.159,0.156,0.145,0.114 and 0.084 mmol g-1 around 30 min at 25℃,respectively,which were sensitive to ionic strength and pH.Langmuir,statistical physical modelling and pseudo-second-order models could be well fitted with the adsorption data,and thermodynamic parameters suggested that the adsorption processes of bis-imidazolium salts were endothermic and spontaneous,indicating that the resultant bis-imidazolium salts could be self-assembled onto Vt in the form of the monolayer.Results of molecular dynamic simulation showed that bis-imidazolium salts were adsorbed on Vt with the lying-flat configuration,and the electrostatic interaction acted as the main interaction mechanism,which were consistent with that obtained experimentally.Changes of wettability of Vt induced by bis-imidazolium salts were verified by capillary rise experiments.Interestingly,the wettability of organo-Vts varied with the spacer length and the order was as follows:EBMI-Vt <TBMI-Vt <HBMI-Vt <OBMI-Vt <DBMI-Vt,which could be explained by their arrangements,hydrophobicity as well as the interaction energies.The longer the spacers of bisimidazolium salts,the greater the absolute values of the interaction energy,the less the adsorbed bisimidazolium salts,while the more hydrophobic of organo-Vt.This work aimed at revealing the adsorption behavior,mechanism as well as effect of bis-imidazolium salts on wettability alteration of negatively charged mineral surface,providing some information for the selection of flooding agent for enhanced oil recovery and wettability modifier.展开更多
基金This work is funded by the National Natural Science Foundation of China(Grant No.21776306).
文摘Wettability is an important surface property that deserves to further explore the factors on its alteration.Series of bis-N-heterocyclic quaternary ammonium salts with different spacer length and N-heterocyclic headgroups(morpholinium(BMMB,BMMD and BMMH),piperidinium(BPMH)and piperazinium(BMPMH))have been synthesized and employed for altering the wettability of vermiculite and its derivates(Vts)treated by Li^(+)-saturated heating method.The results of X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),thermogravimetric analysis(TG-DTG),scanning electron microscopy(SEM)and N_(2)adsorption/desorption isotherms indicate that all of the bis-N-heterocyclic quaternary ammonium salts have been successfully inserted into the vermiculite layers,leading to the organic monolayer.The results of capillary rise tests combined with Lipophilic to Hydrophilic Ratio(LHR)values unveil the wettability alteration of the organo-Vts.As the layer charge decreases,the hydrophilicity of the organo-Vts gradually increases,which is probably caused by the decline in binding sites.As the result of the change in spacer length of modifier,the wetting properties of morpholinium-based organo-Vts change in order of BMMD-Vts>BMMH-Vts>BMMB-Vts,and difference in N-heterocyclic headgroups leads to the sequence of wettability:BMPMH-Vts>BPMH-Vts>BMMH-Vts.Layer charge of Vt,spacer length and the type of the N-heterocyclic headgroup of modifier have the synergistic effect on the regulation of the wettability.
基金funded by the National Natural Science Foundation of China[Grant No.21776306]。
文摘For further understanding the wettability alteration induced by organic salts,series of bis-imidazolium salts(EBMI,TBMI,HBMI,OBMI and DBMI) were employed for investigating their adsorption behavior and wettability alteration on vermiculite(Vt) by experimental and theoretical studies.The characterization results indicated that all bis-imidazolium salts had been loaded on Vts.The adsorption results showed that EBMI,TBMI,HBMI,OBMI and DBMI on Vt reached equilibrium of 0.159,0.156,0.145,0.114 and 0.084 mmol g-1 around 30 min at 25℃,respectively,which were sensitive to ionic strength and pH.Langmuir,statistical physical modelling and pseudo-second-order models could be well fitted with the adsorption data,and thermodynamic parameters suggested that the adsorption processes of bis-imidazolium salts were endothermic and spontaneous,indicating that the resultant bis-imidazolium salts could be self-assembled onto Vt in the form of the monolayer.Results of molecular dynamic simulation showed that bis-imidazolium salts were adsorbed on Vt with the lying-flat configuration,and the electrostatic interaction acted as the main interaction mechanism,which were consistent with that obtained experimentally.Changes of wettability of Vt induced by bis-imidazolium salts were verified by capillary rise experiments.Interestingly,the wettability of organo-Vts varied with the spacer length and the order was as follows:EBMI-Vt <TBMI-Vt <HBMI-Vt <OBMI-Vt <DBMI-Vt,which could be explained by their arrangements,hydrophobicity as well as the interaction energies.The longer the spacers of bisimidazolium salts,the greater the absolute values of the interaction energy,the less the adsorbed bisimidazolium salts,while the more hydrophobic of organo-Vt.This work aimed at revealing the adsorption behavior,mechanism as well as effect of bis-imidazolium salts on wettability alteration of negatively charged mineral surface,providing some information for the selection of flooding agent for enhanced oil recovery and wettability modifier.