Six rice varieties, PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 were raised under aerobic and transplanting conditions to assess the effects of planting conditions on sucrose metabolising enzymes in re...Six rice varieties, PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 were raised under aerobic and transplanting conditions to assess the effects of planting conditions on sucrose metabolising enzymes in relation to the transformation of free sugars to starch and protein in flag leaves and grains. Activities of sucrose synthase, sucrose phosphate synthase and acid invertase increased till flowering stage in leaves and mid-milky stage(14 d after flowering) in grains and thereafter declined in concomitant with the contents of reducing sugar. Under aerobic conditions, the activities of acid invertase and sucrose synthase(cleavage) significantly decreased in conjunction with the decrease in non-reducing sugars and starch content in all the varieties. Disruption of starch biosynthesis under the influence of aerobic conditions in both leaves and grains and the higher build up of sugars possibly resulted in their favoured utilization in nitrogen metabolism. Feng Ai Zan, PR115 and PR120 maintained higher levels of sucrose synthase enzymes in grains and leaves and contents of metabolites(amino acid, protein and non-reducing sugar) under aerobic conditions, while PR116, Punjab Mehak 1 and PAU201 performed better under transplanting conditions, thus showing their adaptation to environmental stress. Yield gap between aerobic and transplanting rice is attributed primarily to the difference in sink activity and strength. Overall, it appear that up-regulation of sucrose synthase(synthesis) and sucrose phosphate synthase under aerobic conditions might be responsible in enhancing growth and productivity of rice varieties.展开更多
Six rice cultivars viz. PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 under the direct-seeded and transplanted conditions were used to investigate the involvement of antioxidative defence system in relat...Six rice cultivars viz. PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 under the direct-seeded and transplanted conditions were used to investigate the involvement of antioxidative defence system in relation to polyamine catabolism in temporal regulation of developing grains. Activities of ascorbate peroxidase (APx), guaiacol peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), polyamine oxidases (PAO) and contents of ascorbate, a-tocopherol, proline and polyamines increased gradually until mid-milky stage and then declined towards maturity stage under both planting conditions. The transplanted condition led to higher activities of antioxidative enzymes (APx, GPx and CAT) and contents of ascorbate, a-tocopherol and proline whereas the direct-seeded condition had elevated levels of PAO and SOD activities and contents of polyamines, lipid peroxide and hydrogen peroxide. Cultivars Feng Ai Zan and PR120 exhibited superior tolerance over other cultivars by accumulating higher contents of ascorbate, a-tocopherol and proline with increasing level of PAO and SOD activities under the direct-seeded condition. However, under the transplanted condition PR116 and PAU201 showed higher activities of antioxidative enzymes with decreasing content of lipid peroxide. Therefore, we concluded that under the direct-seeded condition, enhancements of polyamines content and PAO activity enabled rice cultivars more tolerant to oxidative stress, while under the transplanted condition, antioxidative defence with decreasing of lipid peroxide content was closely associated with the protection of grains by maintaining membrane integrity during rice grain filling. The results indicated that temporal dynamics of H2O2 metabolic machinery was strongly up-regulated especially at the mid-milky stage.展开更多
文摘Six rice varieties, PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 were raised under aerobic and transplanting conditions to assess the effects of planting conditions on sucrose metabolising enzymes in relation to the transformation of free sugars to starch and protein in flag leaves and grains. Activities of sucrose synthase, sucrose phosphate synthase and acid invertase increased till flowering stage in leaves and mid-milky stage(14 d after flowering) in grains and thereafter declined in concomitant with the contents of reducing sugar. Under aerobic conditions, the activities of acid invertase and sucrose synthase(cleavage) significantly decreased in conjunction with the decrease in non-reducing sugars and starch content in all the varieties. Disruption of starch biosynthesis under the influence of aerobic conditions in both leaves and grains and the higher build up of sugars possibly resulted in their favoured utilization in nitrogen metabolism. Feng Ai Zan, PR115 and PR120 maintained higher levels of sucrose synthase enzymes in grains and leaves and contents of metabolites(amino acid, protein and non-reducing sugar) under aerobic conditions, while PR116, Punjab Mehak 1 and PAU201 performed better under transplanting conditions, thus showing their adaptation to environmental stress. Yield gap between aerobic and transplanting rice is attributed primarily to the difference in sink activity and strength. Overall, it appear that up-regulation of sucrose synthase(synthesis) and sucrose phosphate synthase under aerobic conditions might be responsible in enhancing growth and productivity of rice varieties.
文摘Six rice cultivars viz. PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 under the direct-seeded and transplanted conditions were used to investigate the involvement of antioxidative defence system in relation to polyamine catabolism in temporal regulation of developing grains. Activities of ascorbate peroxidase (APx), guaiacol peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), polyamine oxidases (PAO) and contents of ascorbate, a-tocopherol, proline and polyamines increased gradually until mid-milky stage and then declined towards maturity stage under both planting conditions. The transplanted condition led to higher activities of antioxidative enzymes (APx, GPx and CAT) and contents of ascorbate, a-tocopherol and proline whereas the direct-seeded condition had elevated levels of PAO and SOD activities and contents of polyamines, lipid peroxide and hydrogen peroxide. Cultivars Feng Ai Zan and PR120 exhibited superior tolerance over other cultivars by accumulating higher contents of ascorbate, a-tocopherol and proline with increasing level of PAO and SOD activities under the direct-seeded condition. However, under the transplanted condition PR116 and PAU201 showed higher activities of antioxidative enzymes with decreasing content of lipid peroxide. Therefore, we concluded that under the direct-seeded condition, enhancements of polyamines content and PAO activity enabled rice cultivars more tolerant to oxidative stress, while under the transplanted condition, antioxidative defence with decreasing of lipid peroxide content was closely associated with the protection of grains by maintaining membrane integrity during rice grain filling. The results indicated that temporal dynamics of H2O2 metabolic machinery was strongly up-regulated especially at the mid-milky stage.