The difference in microstructure leads to the diversity of shale mechanical properties and bedding fractures distribution patterns.In this paper,the microstructure and mechanical properties of Longmaxi marine shale an...The difference in microstructure leads to the diversity of shale mechanical properties and bedding fractures distribution patterns.In this paper,the microstructure and mechanical properties of Longmaxi marine shale and Qingshankou continental shale were studied by X-ray diffractometer(XRD),field emission scanning electron microscope(FE-SEM)with mineral analysis system,and nanoindentation.Additionally,the typical bedding layers area was properly stratified using Focused Ion Beam(FIB),and the effects of microstructure and mechanical properties on the distribution patterns of bedding fractures were analyzed.The results show that the Longmaxi marine shale sample contains more clay mineral grains,while the Qingshankou continental shale sample contains more hard brittle mineral grains such as feldspar.For Longmaxi marine shale sample,hard brittle minerals with grain sizes larger than 20μm is18.24%and those with grain sizes smaller than 20μm is 16.22%.For Qingshankou continental shale sample,hard brittle minerals with grain sizes larger than 20μm is 40.7%and those with grain sizes smaller than 20μm is 11.82%.In comparison to the Qingshankou continental shale sample,the Longmaxi marine shale sample has a lower modulus,hardness,and heterogeneity.Laminated shales are formed by alternating coarse-grained and fine-grained layers during deposition.The average single-layer thickness of Longmaxi marine shale sample is greater than Qingshankou continental shale sample.The two types of shale have similar bedding fractures distribution patterns and fractures tend to occur in the transition zone from coarse-grained to fine-grained deposition.The orientation of the fracture is usually parallel to the bedding plane and detour occurs in the presence of hard brittle grains.The fracture distribution density of the Longmaxi marine shale sample is lower than that of the Qingshankou continental shale sample due to the strong heterogeneity of the Qingshankou continental shale.The current research provides guidelines for the effective development of shale reservoirs in various sedimentary environments.展开更多
The perforating phase leads to complex and diverse hydraulic fracture propagation behaviors in laminated shale formations. In this paper, a 2D high-speed imaging scheme which can capture the interaction between perfor...The perforating phase leads to complex and diverse hydraulic fracture propagation behaviors in laminated shale formations. In this paper, a 2D high-speed imaging scheme which can capture the interaction between perforating phase and natural shale bedding planes was proposed. The phase field method was used to simulate the same conditions as in the experiment for verification and hydraulic fracture propagation mechanism under the competition of perforating phase and bedding planes was discussed.The results indicate that the bedding planes appear to be no influence on fracture propagation while the perforating phase is perpendicular to the bedding planes, and the fracture propagates along the perforating phase without deflection. When the perforating phase algins with the bedding planes, the fracture initiation pressure reserves the lowest value, and no deflection occurs during fracture propagation. When the perforating phase is the angle 45°, 60°and 75°of bedding planes, the bedding planes begin to play a key role on the fracture deflection. The maximum deflection degree is reached at the perforating phase of75°. Numerical simulation provides evidence that the existence of shale bedding planes is not exactly equivalent to anisotropy for fracture propagation and the difference of mechanical properties between different shale layers is the fundamental reason for fracture deflection. The findings help to understand the intrinsic characteristics of shale and provide a theoretical basis for the optimization design of field perforation parameters.展开更多
Radial borehole fracturing that combines radial boreholes with hydraulic fracturing is anticipated to improve the output of tight oil and gas reservoirs.This paper aims to investigate fracture propagation and pressure...Radial borehole fracturing that combines radial boreholes with hydraulic fracturing is anticipated to improve the output of tight oil and gas reservoirs.This paper aims to investigate fracture propagation and pressure characteristics of radial borehole fracturing in multiple layers.A series of laboratory experiments with artificial rock samples(395 mm×395 mm×395 mm)was conducted using a true triaxial fracturing device.Three crucial factors corresponding to the vertical distance of adjacent radial borehole layers(vertical distance),the azimuth and diameter of the radial borehole are examined.Experimental results show that radial borehole fracturing in multiple layers generates diverse fracture geometries.Four types of fractures are identified based on the connectivity between hydraulic fractures and radial boreholes.The vertical distance significantly influences fracture propagation perpendicular to the radial borehole axis.An increase in the vertical distance impedes fracture connection across multiple radial borehole layers and reduces the fracture propagation distance along the radial borehole axis.The azimuth also influences fracture propagation along the radial borehole axis.Increasing the azimuth reduces the guiding ability of radial boreholes,which makes the fracture quickly curve to the maximum horizontal stress direction.The breakdown pressure correlates with diverse fracture geometries observed.When the fractures connect multi-layer radial boreholes,increasing the vertical distance decreases the breakdown pressure.Decreasing the azimuth and increasing the diameter also decrease the breakdown pressure.The extrusion force exists between the adjacent fractures generated in radial boreholes in multiple rows,which plays a crucial role in enhancing the guiding ability of radial boreholes and results in higher breakdown pressure.The research provides valuable theoretical insights for the field application of radial borehole fracturing technology in tight oil and gas reservoirs.展开更多
Pore structure characterization and its effect on methane adsorption on shale kerogen are crucial to understanding the fundamental mechanisms of gas storage,transport,and reserves evaluation.In this study,we use 3D sc...Pore structure characterization and its effect on methane adsorption on shale kerogen are crucial to understanding the fundamental mechanisms of gas storage,transport,and reserves evaluation.In this study,we use 3D scanning confocal microscopy,scanning electron microscopy(SEM),X-ray nano-computed tomography(nano-CT),and low-pressure N2 adsorption analysis to analyze the pore structures of the shale.Additionally,the adsorption behavior of methane on shales with different pore structures is investigated by molecular simulations.The results show that the SEM image of the shale sample obviously displays four different pore shapes,including slit pore,square pore,triangle pore,and circle pore.The average coordination number is 4.21 and the distribution of coordination numbers demonstrates that pores in the shale have high connectivity.Compared with the adsorption capacity of methane on triangle pores,the adsorption capacity on slit pore,square pore,and circle pore are reduced by 9.86%,8.55%,and 6.12%,respectively.With increasing pressure,these acute wedges fill in a manner different from the right or obtuse angles in the other pores.This study offers a quantitative understanding of the effect of pore structure on methane adsorption in the shale and provides better insight into the evaluation of gas storage in geologic shale reservoirs.展开更多
Coalbed methane(CBM)is an important unconventional natural gas.Exploitation of multilayered CBM reservoir is still facing the challenge of low production rate.Radial borehole fracturing,which integrates radial jet dri...Coalbed methane(CBM)is an important unconventional natural gas.Exploitation of multilayered CBM reservoir is still facing the challenge of low production rate.Radial borehole fracturing,which integrates radial jet drilling and hydraulic fracturing,is expected to create complex fracture networks in multilayers and enhance CBM recovery.The main purpose of this paper is to investigate the mechanisms and efficacy of radial borehole fracturing in increasing CBM production in multiple layers.First,a two-phase flow and multi-scale 3 D fracture network including radial laterals,hydraulic fractures and face/butt cleats model is established,and embedded discrete fracture model(EDFM)is applied to handle the complex fracture networks.Then,effects of natural-fracture nonuniform distribution are investigated to show the advantages of targeted stimulation for radial borehole fracturing.Finally,two field CBM wells located in eastern Yunnan-western Guizhou,China were presented to illuminate the stimulation efficiency by radial borehole fracturing.The results indicated that compared with vertical well fracturing,radial borehole fracturing can achieve higher gas/water daily production rate and cumulative gas/water production,approximately 2 times higher.Targeted communications to cleats and sweet spots and flexibility in designing radial borehole parameters in different layers so as to increase fracture-network complexity and connectivity are the major reasons for production enhancement of radial borehole fracturing.Furthermore,the integration of geology-engineering is vital for the decision of radial borehole fracturing designing scheme.The key findings of this paper could provide useful insights towards understanding the capability of radial borehole fracturing in developing CBM and coal-measure gas in multiple-thin layers.展开更多
Abrasive waterjet(AWJ)fracturing has become an accepted horizontal multistage stimulation technique due to its flexibility and high efficiency of extensive fracture placement.The downhole tool failure of AWJ fracturin...Abrasive waterjet(AWJ)fracturing has become an accepted horizontal multistage stimulation technique due to its flexibility and high efficiency of extensive fracture placement.The downhole tool failure of AWJ fracturing becomes an issue in the massive hydraulic fracturing because of high velocity and proppant erosion.This paper proposed a 3D computational fluid dynamics(CFD)-based erosion model by considering high-velocity waterjet impact,proppant shear erosion,and specific inner structure of hydra-jet tool body.The discrete phase approach was used to track the proppant transport and its concentration distribution.Field observation provides strong evidence of erosion patterns and mechanisms obtained from CFD simulation.The results show that the erosion rate has a space dependence in the inner wall of the tool body.The severe erosion areas are primarily located at the entries of the nozzle.Evident erosion patterns are found including a‘Rabbit’s ear’erosion at the upper-layer nozzles and a half bottom loop erosion at the lower-layer nozzles.Erosion mechanisms attribute to high flow velocity at the entry of nozzles and the inertia force of proppant.Sensitivity analysis demonstrates that the pumping rate is a primary factor contributing to erosion intensity.展开更多
Properties of shale in an acid environment are important when acid or CO2 is injected into geologic formations as a working fluid for enhanced oil and gas recovery,hydraulic fracturing and reduced fracture initiation ...Properties of shale in an acid environment are important when acid or CO2 is injected into geologic formations as a working fluid for enhanced oil and gas recovery,hydraulic fracturing and reduced fracture initiation pressure.It has previously been shown that acid fluids can enhance the formation conductivity and decrease the hardness of shale.However,less is known about the effect of dilute acid on the adhesion properties of shale.In the study,shale samples are characterized in detail with advanced analysis.Adhesion properties of shale via dilute acid treatment were revealed by atomic force microscopy(AFM)for the first time.Results indicate that acid treatment can greatly enhance adhesion forces of the shale surface.After acid treatment,the average adhesion forces show a platform-like growth with an increase in loading force.Through analysis of results from AFM,scanning electron microscopy,and X-ray diffraction,we affirm that the enhanced adhesion forces are mainly from increased specific surface area and reduced elastic modulus.The results presented in this work help understand the adhesion properties of shale oil/gas present in an acidic environment,which have great significance in unconventional resources development.展开更多
Mechanical heterogeneity is a major characteristic of the organic-rich shale.The relation between mechanical heterogeneity and formation in-situ stress has been seldomly addressed but important to understand hydraulic...Mechanical heterogeneity is a major characteristic of the organic-rich shale.The relation between mechanical heterogeneity and formation in-situ stress has been seldomly addressed but important to understand hydraulic fracture propagation,wellbore stability,and hydrocarbon flow.In this paper,the grid nanoindentation technique was used to characterize the heterogeneity of the mechanical properties of Longmaxi organic-rich shales from various burial depths and in-situ stress.The measured elastic modulus and hardness of each sample are deconvolved into three phases including soft phase,medium stiff phase and stiff phase according to mineral category.As the burial depth and corresponding in-situ stress increase,the overall elastic modulus and hardness of the sample enhance.Simultaneously,the percentage of soft minerals decreases,and the probability distribution tends to concentrate through 95%confidence interval evaluation which demonstrates weakened heterogeneity.Furthermore,SEM images provide evidence that extended cracking,initiated cracking,crushing and ductile deforming always occur around indentation imprints.This confirms that even under deep buried depth and high in-situ stress,brittle fracture and ductile deformation can exist synchronously.This paper demonstrates the influence of in-situ stress on the heterogeneity of shale micromechanics.展开更多
Proppant is a key material for enhancing unconventional oil and gas production which requires a long distance of migration and efficient liquid conductivity paths within the hydraulic fracture.However,it is difficult ...Proppant is a key material for enhancing unconventional oil and gas production which requires a long distance of migration and efficient liquid conductivity paths within the hydraulic fracture.However,it is difficult to find a proppant with both high self-suspension ability and liquid conductivity.Here,a simple method is developed to coat epoxy resin onto the ceramic proppant and fabricate a novel coated proppant with high hydrophobicity,self-suspension,and liquid conductivity performance.Compared with uncoated ceramic proppants,the epoxy resin coated(ERC) proppant has a high self-suspension ability nearly 16 times that of the uncoated proppants.Besides,the hydrophobic property and the liquid conductivity of the ERC proppant increased by 83.8% and 16.71%,respectively,compared with the uncoated proppants.In summary,this novel ERC proppant provides new insights into the design of functional proppants,which are expected to be applied to oil and gas production.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52074315&U19B6003)。
文摘The difference in microstructure leads to the diversity of shale mechanical properties and bedding fractures distribution patterns.In this paper,the microstructure and mechanical properties of Longmaxi marine shale and Qingshankou continental shale were studied by X-ray diffractometer(XRD),field emission scanning electron microscope(FE-SEM)with mineral analysis system,and nanoindentation.Additionally,the typical bedding layers area was properly stratified using Focused Ion Beam(FIB),and the effects of microstructure and mechanical properties on the distribution patterns of bedding fractures were analyzed.The results show that the Longmaxi marine shale sample contains more clay mineral grains,while the Qingshankou continental shale sample contains more hard brittle mineral grains such as feldspar.For Longmaxi marine shale sample,hard brittle minerals with grain sizes larger than 20μm is18.24%and those with grain sizes smaller than 20μm is 16.22%.For Qingshankou continental shale sample,hard brittle minerals with grain sizes larger than 20μm is 40.7%and those with grain sizes smaller than 20μm is 11.82%.In comparison to the Qingshankou continental shale sample,the Longmaxi marine shale sample has a lower modulus,hardness,and heterogeneity.Laminated shales are formed by alternating coarse-grained and fine-grained layers during deposition.The average single-layer thickness of Longmaxi marine shale sample is greater than Qingshankou continental shale sample.The two types of shale have similar bedding fractures distribution patterns and fractures tend to occur in the transition zone from coarse-grained to fine-grained deposition.The orientation of the fracture is usually parallel to the bedding plane and detour occurs in the presence of hard brittle grains.The fracture distribution density of the Longmaxi marine shale sample is lower than that of the Qingshankou continental shale sample due to the strong heterogeneity of the Qingshankou continental shale.The current research provides guidelines for the effective development of shale reservoirs in various sedimentary environments.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52074315&U19B6003)。
文摘The perforating phase leads to complex and diverse hydraulic fracture propagation behaviors in laminated shale formations. In this paper, a 2D high-speed imaging scheme which can capture the interaction between perforating phase and natural shale bedding planes was proposed. The phase field method was used to simulate the same conditions as in the experiment for verification and hydraulic fracture propagation mechanism under the competition of perforating phase and bedding planes was discussed.The results indicate that the bedding planes appear to be no influence on fracture propagation while the perforating phase is perpendicular to the bedding planes, and the fracture propagates along the perforating phase without deflection. When the perforating phase algins with the bedding planes, the fracture initiation pressure reserves the lowest value, and no deflection occurs during fracture propagation. When the perforating phase is the angle 45°, 60°and 75°of bedding planes, the bedding planes begin to play a key role on the fracture deflection. The maximum deflection degree is reached at the perforating phase of75°. Numerical simulation provides evidence that the existence of shale bedding planes is not exactly equivalent to anisotropy for fracture propagation and the difference of mechanical properties between different shale layers is the fundamental reason for fracture deflection. The findings help to understand the intrinsic characteristics of shale and provide a theoretical basis for the optimization design of field perforation parameters.
基金The authors gratefully acknowledge the financial support received from the Strategic Cooperation Technology Projects of CNPC and CUPB(No.ZLZX2020-01)the National Key Scientific Research Instrument Research Project of NSFC(No.51827804).
文摘Radial borehole fracturing that combines radial boreholes with hydraulic fracturing is anticipated to improve the output of tight oil and gas reservoirs.This paper aims to investigate fracture propagation and pressure characteristics of radial borehole fracturing in multiple layers.A series of laboratory experiments with artificial rock samples(395 mm×395 mm×395 mm)was conducted using a true triaxial fracturing device.Three crucial factors corresponding to the vertical distance of adjacent radial borehole layers(vertical distance),the azimuth and diameter of the radial borehole are examined.Experimental results show that radial borehole fracturing in multiple layers generates diverse fracture geometries.Four types of fractures are identified based on the connectivity between hydraulic fractures and radial boreholes.The vertical distance significantly influences fracture propagation perpendicular to the radial borehole axis.An increase in the vertical distance impedes fracture connection across multiple radial borehole layers and reduces the fracture propagation distance along the radial borehole axis.The azimuth also influences fracture propagation along the radial borehole axis.Increasing the azimuth reduces the guiding ability of radial boreholes,which makes the fracture quickly curve to the maximum horizontal stress direction.The breakdown pressure correlates with diverse fracture geometries observed.When the fractures connect multi-layer radial boreholes,increasing the vertical distance decreases the breakdown pressure.Decreasing the azimuth and increasing the diameter also decrease the breakdown pressure.The extrusion force exists between the adjacent fractures generated in radial boreholes in multiple rows,which plays a crucial role in enhancing the guiding ability of radial boreholes and results in higher breakdown pressure.The research provides valuable theoretical insights for the field application of radial borehole fracturing technology in tight oil and gas reservoirs.
基金The authors acknowledge financial support from the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.51821092)the General Projects of the Natural Science Foundation of China(No.51674275)+1 种基金the Foundation of State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(No.PRP/open-2003)Tianyu Wang acknowledges the China Scholarship Council for financial support during his visit to Harvard University.
文摘Pore structure characterization and its effect on methane adsorption on shale kerogen are crucial to understanding the fundamental mechanisms of gas storage,transport,and reserves evaluation.In this study,we use 3D scanning confocal microscopy,scanning electron microscopy(SEM),X-ray nano-computed tomography(nano-CT),and low-pressure N2 adsorption analysis to analyze the pore structures of the shale.Additionally,the adsorption behavior of methane on shales with different pore structures is investigated by molecular simulations.The results show that the SEM image of the shale sample obviously displays four different pore shapes,including slit pore,square pore,triangle pore,and circle pore.The average coordination number is 4.21 and the distribution of coordination numbers demonstrates that pores in the shale have high connectivity.Compared with the adsorption capacity of methane on triangle pores,the adsorption capacity on slit pore,square pore,and circle pore are reduced by 9.86%,8.55%,and 6.12%,respectively.With increasing pressure,these acute wedges fill in a manner different from the right or obtuse angles in the other pores.This study offers a quantitative understanding of the effect of pore structure on methane adsorption in the shale and provides better insight into the evaluation of gas storage in geologic shale reservoirs.
基金supported by the National Natural Science Foundation of China(National R&D Program for Major Research Instruments,51827804)Youth Program of National Natural Science Foundation of China(52004299)National Science Foundation for Distinguished Young Scholars(51725404)
文摘Coalbed methane(CBM)is an important unconventional natural gas.Exploitation of multilayered CBM reservoir is still facing the challenge of low production rate.Radial borehole fracturing,which integrates radial jet drilling and hydraulic fracturing,is expected to create complex fracture networks in multilayers and enhance CBM recovery.The main purpose of this paper is to investigate the mechanisms and efficacy of radial borehole fracturing in increasing CBM production in multiple layers.First,a two-phase flow and multi-scale 3 D fracture network including radial laterals,hydraulic fractures and face/butt cleats model is established,and embedded discrete fracture model(EDFM)is applied to handle the complex fracture networks.Then,effects of natural-fracture nonuniform distribution are investigated to show the advantages of targeted stimulation for radial borehole fracturing.Finally,two field CBM wells located in eastern Yunnan-western Guizhou,China were presented to illuminate the stimulation efficiency by radial borehole fracturing.The results indicated that compared with vertical well fracturing,radial borehole fracturing can achieve higher gas/water daily production rate and cumulative gas/water production,approximately 2 times higher.Targeted communications to cleats and sweet spots and flexibility in designing radial borehole parameters in different layers so as to increase fracture-network complexity and connectivity are the major reasons for production enhancement of radial borehole fracturing.Furthermore,the integration of geology-engineering is vital for the decision of radial borehole fracturing designing scheme.The key findings of this paper could provide useful insights towards understanding the capability of radial borehole fracturing in developing CBM and coal-measure gas in multiple-thin layers.
基金financially supported by the National Science and Technology Major Project(Nos.2017 ZX05009-003&2016 ZX05028)PetroChina Innovation Foundation(No.2018D-5007-0308)
文摘Abrasive waterjet(AWJ)fracturing has become an accepted horizontal multistage stimulation technique due to its flexibility and high efficiency of extensive fracture placement.The downhole tool failure of AWJ fracturing becomes an issue in the massive hydraulic fracturing because of high velocity and proppant erosion.This paper proposed a 3D computational fluid dynamics(CFD)-based erosion model by considering high-velocity waterjet impact,proppant shear erosion,and specific inner structure of hydra-jet tool body.The discrete phase approach was used to track the proppant transport and its concentration distribution.Field observation provides strong evidence of erosion patterns and mechanisms obtained from CFD simulation.The results show that the erosion rate has a space dependence in the inner wall of the tool body.The severe erosion areas are primarily located at the entries of the nozzle.Evident erosion patterns are found including a‘Rabbit’s ear’erosion at the upper-layer nozzles and a half bottom loop erosion at the lower-layer nozzles.Erosion mechanisms attribute to high flow velocity at the entry of nozzles and the inertia force of proppant.Sensitivity analysis demonstrates that the pumping rate is a primary factor contributing to erosion intensity.
基金supported by National Natural Science Foundation of China(No.51674275)National Science and Technology Major Project(2017ZX05009-003)PetroChina Innovation Foundation(2018D-5007-0308)
文摘Properties of shale in an acid environment are important when acid or CO2 is injected into geologic formations as a working fluid for enhanced oil and gas recovery,hydraulic fracturing and reduced fracture initiation pressure.It has previously been shown that acid fluids can enhance the formation conductivity and decrease the hardness of shale.However,less is known about the effect of dilute acid on the adhesion properties of shale.In the study,shale samples are characterized in detail with advanced analysis.Adhesion properties of shale via dilute acid treatment were revealed by atomic force microscopy(AFM)for the first time.Results indicate that acid treatment can greatly enhance adhesion forces of the shale surface.After acid treatment,the average adhesion forces show a platform-like growth with an increase in loading force.Through analysis of results from AFM,scanning electron microscopy,and X-ray diffraction,we affirm that the enhanced adhesion forces are mainly from increased specific surface area and reduced elastic modulus.The results presented in this work help understand the adhesion properties of shale oil/gas present in an acidic environment,which have great significance in unconventional resources development.
基金financially supported by National Natural Science Foundation of China(No.U19B6003,No.52074315)。
文摘Mechanical heterogeneity is a major characteristic of the organic-rich shale.The relation between mechanical heterogeneity and formation in-situ stress has been seldomly addressed but important to understand hydraulic fracture propagation,wellbore stability,and hydrocarbon flow.In this paper,the grid nanoindentation technique was used to characterize the heterogeneity of the mechanical properties of Longmaxi organic-rich shales from various burial depths and in-situ stress.The measured elastic modulus and hardness of each sample are deconvolved into three phases including soft phase,medium stiff phase and stiff phase according to mineral category.As the burial depth and corresponding in-situ stress increase,the overall elastic modulus and hardness of the sample enhance.Simultaneously,the percentage of soft minerals decreases,and the probability distribution tends to concentrate through 95%confidence interval evaluation which demonstrates weakened heterogeneity.Furthermore,SEM images provide evidence that extended cracking,initiated cracking,crushing and ductile deforming always occur around indentation imprints.This confirms that even under deep buried depth and high in-situ stress,brittle fracture and ductile deformation can exist synchronously.This paper demonstrates the influence of in-situ stress on the heterogeneity of shale micromechanics.
基金supported by the National Key Research and Development Program (SQ2020YFC190006-02)National Nature Science Foundation of China (No. 51875577)Science Foundation of China University of Petroleum, Beijing (Nos. 2462019QNXZ02, 2462020YXZZ018)。
文摘Proppant is a key material for enhancing unconventional oil and gas production which requires a long distance of migration and efficient liquid conductivity paths within the hydraulic fracture.However,it is difficult to find a proppant with both high self-suspension ability and liquid conductivity.Here,a simple method is developed to coat epoxy resin onto the ceramic proppant and fabricate a novel coated proppant with high hydrophobicity,self-suspension,and liquid conductivity performance.Compared with uncoated ceramic proppants,the epoxy resin coated(ERC) proppant has a high self-suspension ability nearly 16 times that of the uncoated proppants.Besides,the hydrophobic property and the liquid conductivity of the ERC proppant increased by 83.8% and 16.71%,respectively,compared with the uncoated proppants.In summary,this novel ERC proppant provides new insights into the design of functional proppants,which are expected to be applied to oil and gas production.