期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Finned Zn-MFI zeolite encapsulated noble metal nanoparticle catalysts for the oxidative dehydrogenation of propane with carbon dioxide
1
作者 En-Hui Yuan Yiming Niu +7 位作者 Xing Huang Meng Li Jun Bao Yong-Hong Song Bingsen Zhang Zhao-Tie Liu marc-georg willinger Zhong-Wen Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期479-491,I0011,共14页
Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existin... Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existing catalyst is limited due to the poor activity and stability,which hinders its industrialization.Herein,we design the finned Zn-MFI zeolite encapsulated noble metal nanoparticles(NPs)as bifunctional catalysts(NPs@Zn-MFI)for CO_(2)-ODP.Characterization results reveal that the Zn2+species are coordinated with the MFI zeolite matrix as isolated cations and the NPs of Pt,Rh,or Rh Pt are highly dispersed in the zeolite crystals.The isolated Zn2+cations are very effective for activating the propane and the small NPs are favorable for activating the CO_(2),which synergistically promote the selective transformation of propane and CO_(2)to propylene and CO.As a result,the optimal 0.25%Rh0.50%Pt@Zn-MFI catalyst shows the best propylene yield,satisfactory CO_(2)conversion,and long-term stability.Moreover,considering the tunable synergetic effects between the isolated cations and NPs,the developed approach offers a general guideline to design more efficient CO_(2)-ODP catalysts,which is validated by the improved performance of the bifunctional catalysts via simply substituting Sn4+cations for Zn2+cations in the MFI zeolite matrix. 展开更多
关键词 Oxidative dehydrogenation PROPANE Carbon dioxide Finned Zn-MFI zeolite Encapsulated noble metal nanoparticles
下载PDF
Structural and chemical transformations of CuZn alloy nanoparticles under reactive redox atmospheres:An in situ TEM study
2
作者 Shengnan Yue Qian Li +4 位作者 Chaobin Zeng Alexander Klyushin Ramzi Farra marc-georg willinger Xing Huang 《Nano Research》 SCIE EI CSCD 2024年第7期6265-6273,共9页
Alloying metals to form intermetallics has been proven effective in tuning the chemical properties of metal-based catalysts.However,intermetallic alloys can undergo structural and chemical transformations under reacti... Alloying metals to form intermetallics has been proven effective in tuning the chemical properties of metal-based catalysts.However,intermetallic alloys can undergo structural and chemical transformations under reactive conditions,leading to changes in their catalytic function.Elucidating and understanding these transformations are crucial for establishing relevant structureperformance relationships and for the rational design of alloy-based catalysts.In this work,we used CuZn alloy nanoparticles(NPs)as a model material system and employed in situ transmission electron microscopy(TEM)to investigate the structural and chemical changes of CuZn NPs under H_(2),O_(2)and their mixture.Our results show how CuZn NPs undergo sequential transformations in the gas mixture at elevated temperatures,starting with gradual leaching and segregation of Zn,followed by oxidation at the NP surface.The remaining copper at the core of particles can then engage in dynamic behavior,eventually freeing itself from the zinc oxide shell.The structural dynamics arises from an oscillatory phase transition between Cu and Cu_(2)O and is correlated with the catalytic water formation,as confirmed by in situ mass spectrometry(MS).Under pure H_(2)or O_(2)atmosphere,we observe different structural evolution pathways and final chemical states of CuZn NPs compared to those in the gas mixture.These results clearly demonstrate that the chemical state of alloy NPs can vary considerably under reactive redox atmospheres,particularly for those containing elements with distinct redox properties,necessitating the use of in situ or detailed ex situ characterizations to gain relevant insights into the states of intermetallic alloy-based catalysts and structure-activity relationships. 展开更多
关键词 In situ transmission electron microscopy(TEM) CuZn alloy structural and chemical transformations redox atmosphere
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部