The determination method of catechol by fluorescence quenching was developed.The assay was based on the combination of the unique property of gold nanoparticles with tyrosinase enzymatic reaction.In the presence of ty...The determination method of catechol by fluorescence quenching was developed.The assay was based on the combination of the unique property of gold nanoparticles with tyrosinase enzymatic reaction.In the presence of tyrosinase,the fluorescence of gold nanoparticles was quenched by catechol which can be employed to detect catechol.Under the optimal conditions,a linear range 5.0×10^(-7)-1.0×10^(-3) mol L^(-1) and a detection limit 1.0×10^(-7) mol L^(-1) of catechol were obtained.o-Quinone intermediate produced...展开更多
An ethanol biosensor was fabricated based on a Methylobacterium organophilium-immobilized eggshell membrane and an oxygen(O2) electrode.A linear response for ethanol was obtained in the range of 0.050-7.5 mmol/L wit...An ethanol biosensor was fabricated based on a Methylobacterium organophilium-immobilized eggshell membrane and an oxygen(O2) electrode.A linear response for ethanol was obtained in the range of 0.050-7.5 mmol/L with a detection limit of 0.025 mmol/L(S/N= 3) and a R.S.D.of 2.1%.The response time was less than 100 s at room temperature and ambient pressure. The optimal loading of bacterial cells on the biosensor membrane is 40 mg(wet weight).The optimal working conditions for the microbial biosensor are pH 7.0 phosphate buffer(50 mmol/L) at 20-25℃.The interference test,operational and storage stability of the biosensor are studied in detail.Finally,the biosensor is applied to determine the ethanol contents in various alcohol samples and the results are comparable to that obtained by gas chromatographic method and the results are satisfactory.Our proposed biosensor provides a convenient,simple and reliable method to determine ethanol content in alcoholic drinks.展开更多
Owing to the excellent stability,biocompatibility and photoluminescence property,graphene quantum dots(GQDs)are emerging as a kind of potential materials to be applied in a series of fields ranging from sensor to drug...Owing to the excellent stability,biocompatibility and photoluminescence property,graphene quantum dots(GQDs)are emerging as a kind of potential materials to be applied in a series of fields ranging from sensor to drug delivery.As the growing concern for human and environmental safety,selective detection of metal ions has been paid more and more attention.GQDs,as nanoparticles with superior optical properties,have been attracting growing attention in the field of metal ions detection.In this work,glutathione(GSH)functionalized boron doped graphene quantum dots(B-GQDs@GSH)were successfully synthesized with stable bright blue fluorescence and has been used for the detection of Fe^(3+).A good linear relationship between 1/(F_(0)-F)and 1/c with the concentration ranging from 0.70 to 53μmol/L was obtained with a detection limit of 5.5 nmol/L.The application of B-GQDs@GSH for Fe^(3+)detection in water samples was demonstrated and the quenching mechanism was further explored.Due to low cytotoxicity and favorable biocompatibility,B-GQDs@GSH were successfully applied for cell fluorescence imaging and intracellular determination of Fe^(3+).展开更多
基金supported by the National Natural Science Foundation of China(No.20875059)
文摘The determination method of catechol by fluorescence quenching was developed.The assay was based on the combination of the unique property of gold nanoparticles with tyrosinase enzymatic reaction.In the presence of tyrosinase,the fluorescence of gold nanoparticles was quenched by catechol which can be employed to detect catechol.Under the optimal conditions,a linear range 5.0×10^(-7)-1.0×10^(-3) mol L^(-1) and a detection limit 1.0×10^(-7) mol L^(-1) of catechol were obtained.o-Quinone intermediate produced...
基金supported by the Youth Science Foundation of Shanxi Province(No. 2010021014)the National Natural Science Foundation of China(No.21071092)
文摘An ethanol biosensor was fabricated based on a Methylobacterium organophilium-immobilized eggshell membrane and an oxygen(O2) electrode.A linear response for ethanol was obtained in the range of 0.050-7.5 mmol/L with a detection limit of 0.025 mmol/L(S/N= 3) and a R.S.D.of 2.1%.The response time was less than 100 s at room temperature and ambient pressure. The optimal loading of bacterial cells on the biosensor membrane is 40 mg(wet weight).The optimal working conditions for the microbial biosensor are pH 7.0 phosphate buffer(50 mmol/L) at 20-25℃.The interference test,operational and storage stability of the biosensor are studied in detail.Finally,the biosensor is applied to determine the ethanol contents in various alcohol samples and the results are comparable to that obtained by gas chromatographic method and the results are satisfactory.Our proposed biosensor provides a convenient,simple and reliable method to determine ethanol content in alcoholic drinks.
基金financially supported by the Natural Science Foundation of Shanxi Province of China(201901D111210)Key Research Project of Science and Technology Plan in Jinzhong-Social Development Projects(Y213003)+1 种基金Special Project of Lvliang for Introduced High-level Science and Technology Talents(2021RC-2-1)Transverse Scientific Research Project of Shanxi Taiyuan Pharmaceutical Co.Ltd(2F022022006)
文摘Owing to the excellent stability,biocompatibility and photoluminescence property,graphene quantum dots(GQDs)are emerging as a kind of potential materials to be applied in a series of fields ranging from sensor to drug delivery.As the growing concern for human and environmental safety,selective detection of metal ions has been paid more and more attention.GQDs,as nanoparticles with superior optical properties,have been attracting growing attention in the field of metal ions detection.In this work,glutathione(GSH)functionalized boron doped graphene quantum dots(B-GQDs@GSH)were successfully synthesized with stable bright blue fluorescence and has been used for the detection of Fe^(3+).A good linear relationship between 1/(F_(0)-F)and 1/c with the concentration ranging from 0.70 to 53μmol/L was obtained with a detection limit of 5.5 nmol/L.The application of B-GQDs@GSH for Fe^(3+)detection in water samples was demonstrated and the quenching mechanism was further explored.Due to low cytotoxicity and favorable biocompatibility,B-GQDs@GSH were successfully applied for cell fluorescence imaging and intracellular determination of Fe^(3+).