CO_(2) methanation using nickel-based catalysts has attracted large interest as a promising power-to-gas route.Ni nanoparticles supported on nitrogen-doped CNTs with Ni loadings in the range from 10 wt% to 50 wt% were...CO_(2) methanation using nickel-based catalysts has attracted large interest as a promising power-to-gas route.Ni nanoparticles supported on nitrogen-doped CNTs with Ni loadings in the range from 10 wt% to 50 wt% were synthesized by impregnation,calcination and reduction and characterized by elemental analysis,X-ray powder diffraction,H_(2) temperature-programmed reduction,CO pulse chemisorption and transmission electron microscopy.The Ni/NCNT catalysts were highly active in CO_(2) methanation at atmospheric pressure,reaching over 50% CO_(2) conversion and over 95% CH_(4) selectivity at 340℃ and a GHSV of50,000 mL g^(-1) h^(-1) under kinetically controlled conditions.The small Ni particle sizes below 10 nm despite the high Ni loading is ascribed to the efficient anchoring on the N-doped CNTs.The optimum loading of 30 wt%-40 wt% Ni was found to result in the highest Ni surface area,the highest degree of conversion and the highest selectivity to methane.A constant TOF of 0.3 s^(-1) was obtained indicating similar catalytic properties of the Ni nanoparticles in the range from 10 wt%to 50 wt% Ni loading.Long-term experiments showed that the Ni/NCNT catalyst with 30 wt% Ni was highly stable for 100 h time on stream.展开更多
Nitrogen-doped carbon nanotubes (NCNTs) were used as a support for iron (Fe) nanoparticles applied in car- bon dioxide (CO_2) hydrogenation at 633 K and 25 bar (1 bar = 10-5 Pa). The Fe/NCNT catalyst promoted ...Nitrogen-doped carbon nanotubes (NCNTs) were used as a support for iron (Fe) nanoparticles applied in car- bon dioxide (CO_2) hydrogenation at 633 K and 25 bar (1 bar = 10-5 Pa). The Fe/NCNT catalyst promoted with both potassium (K) and manganese (Mn) showed high performance in CO_2 hydrogenation, reaching 34.9% conversion with a gas hourly space velocity (GHSV) of 3.1 L-(g·h)-1. Product selectivities were high for olefin products and low for short-chain alkanes for the K-promoted catalysts. When Fe/NCNT catalyst was promot- ed with both K and Mn, the catalytic activity was stable for 60 h of reaction time. The structural effect of the Mn promoter was demonstrated by X-ray diffraction (XRD), temperature-programmed reduction (TPR) with molecular hydrogen (H2), and in situ X-ray absorption near-edge structure (XANES) analysis. The Mn pro- moter stabilized wtistite (FeO) as an intermediate and lowered the TPR onset temperature. Catalytic ammo- nia (NH_3) decomposition was used as an additional probe reaction for characterizing the promoter effects. The Fe/NCNT catalyst promoted with both K and Mn had the highest catalytic activity, and the Mn-promoted Fe/NCNT catalysts had the highest thermal stability under reducing conditions.展开更多
The influence of the drop-casted nickel boride catalyst loading on glassy carbon electrodes was investigated in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in alkaline glycerol electrooxidation.The c...The influence of the drop-casted nickel boride catalyst loading on glassy carbon electrodes was investigated in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in alkaline glycerol electrooxidation.The continuously operated radial flow cell consisted of a borehole electrode positioned 50μm above an internal reflection element enabling operando FTIR spectroscopy.It is identified as a suitable tool for facile and reproducible screening of electrocatalysts under well-defined conditions,additionally providing access to the selectivities in complex reaction networks such as glycerol oxidation.The fast product identification by ATR-IR spectroscopy was validated by the more time-consuming quantitative HPLC analysis of the pumped electrolyte.High degrees of glycerol conversion were achieved under the applied laminar flow conditions using 0.1 M glycerol and 1 M KOH in water and a flow rate of 5μL min^(–1).Conversion and selectivity were found to depend on the catalyst loading,which determined the catalyst layer thickness and roughness.The highest loading of 210μg cm^(–2)resulted in 73%conversion and a higher formate selectivity of almost 80%,which is ascribed to longer residence times in rougher films favoring readsorption and C–C bond scission.The lowest loading of 13μg cm^(–2)was sufficient to reach 63%conversion,a lower formate selectivity of 60%,and,correspondingly,higher selectivities of C_(2)species such as glycolate amounting to 8%.Thus,only low catalyst loadings resulting in very thin films in the fewμm thickness range are suitable for reliable catalyst screening.展开更多
Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Tempe...Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Temperature-programmed desorption, N2 physisorption, Raman spectroscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were employed to characterize the surface properties of OCNTs and NCNTs, aiming at a detailed analysis of the type and amount of oxygen- and nitrogen-containing groups as well as surface defects. The gas-phase treatments applied for oxygen and nitrogen functionalization at elevated temperatures up to 600 ℃ led to the increase of surface defects, but did not cause structural damages in the bulk. NCNTs showed a clearly higher activity than the pristine CNTs and OCNTs in the hydrogenation of 1,5-cyclooctadiene, and also the selectivity to cyclooctene was higher. The favorable catalytic properties are ascribed to the nitrogen-containing surface functional groups as well as surface defects related to nitrogen species. In contrast, oxygen-containing surface groups and the surface defects caused by oxygen species did not show clear contribution to the hydrogenation catalysis.展开更多
A direct strategy for the creation of defects on carbon nanofibers (CNFs) has been developed by steam treatment.Nitrogen physisorption,XRD,Raman spectra,SEM and TEM analyses proved the existence of the new defects on ...A direct strategy for the creation of defects on carbon nanofibers (CNFs) has been developed by steam treatment.Nitrogen physisorption,XRD,Raman spectra,SEM and TEM analyses proved the existence of the new defects on CNFs.BET surface area of CNFs after steam treatment was enhanced from 20 to 378 m2/g.Pd catalysts supported on CNFs were also prepared by colloidal deposition method.The different activity of Pd/CNFs catalysts in the partial hydrogenation of phenylacetylene further demonstrated the diverse surfaces of CNFs could be formed by steam treatment.展开更多
Co-Cu-based catalysts are widely applied in higher alcohol synthesis (HAS) from synthesis gas. Although the nature of the active sites is still not fully understood, the formation of Co2C under HAS conditions seems to...Co-Cu-based catalysts are widely applied in higher alcohol synthesis (HAS) from synthesis gas. Although the nature of the active sites is still not fully understood, the formation of Co2C under HAS conditions seems to play a major role. A CO pretreatment procedure was developed allowing a systematic investigation of the influence of cobalt carbidization on the structural properties and catalytic performance of the catalysts. By exposing the catalyst to a CO-containing atmosphere prior to HAS, Co enrichment of the catalyst surface occurred followed by carbide formation. This surface modification decreased the formation of hydrocarbons and enhanced the formation of C2+OH. The catalyst pretreated with CO at 20 bar achieved the highest selectivity to ethanol and the lowest hydrocarbon selectivity.展开更多
Photocatalytic oxidation of alcohols has received more and more attention in recent years following the numerous studies on the degradation of pollutants, hydrogen evolution, and CO_(2) reduction by photocatalysis. In...Photocatalytic oxidation of alcohols has received more and more attention in recent years following the numerous studies on the degradation of pollutants, hydrogen evolution, and CO_(2) reduction by photocatalysis. Instead of the total oxidation of organics in the degradation process, the photo-oxidation of alcohols aims at the selective conversion of alcohols to produce carbonyl/acid compounds. Promising results have been achieved in designing the catalysts and reaction system, as well as in the mechanistic investigations in the past few years. This review summarizes the state-of-the-art progress in the photo-oxidation of alcohols, including the development of photocatalysts and cocatalysts, reaction conditions including the solvent and the atmosphere, and the exploration of mechanisms with scavengers experiment, electron paramagnetic resonance (EPR) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The challenges and outlook for the further research in this field are also discussed.展开更多
Synthesis of silver nanoparticles(Ag NPs) with state-of-the-art chemical or photo-reduction methods generally takes several steps and requires both reducing agents and stabilizers to obtain NPs with narrow size distri...Synthesis of silver nanoparticles(Ag NPs) with state-of-the-art chemical or photo-reduction methods generally takes several steps and requires both reducing agents and stabilizers to obtain NPs with narrow size distribution.Herein, we report a novel method to synthesize Ag NPs rapidly in one step, achieving typical particle sizes in the range from 5 to 15 nm.The synthesis steps only involve three chemicals without any reducing agent: AgNO3 as precursor, polyvinylpyrrolidone(PVP) as stabilizer, and AgCl as photocatalyst.The Ag NPs were supported on carbon and showed excellent performance in thermal catalytic pnitrophenol reduction and nitrobenzene hydrogenation, and as electrocatalyst for the oxygen reduction reaction.展开更多
Nitrogen-doped carbon nanotubes(NCNTs) were synthesized by chemical vapor deposition using cobaltbased oxides as catalyst and ethylenediamine(EDA) as carbon/nitrogen precursor. The influence of growth time,EDA con...Nitrogen-doped carbon nanotubes(NCNTs) were synthesized by chemical vapor deposition using cobaltbased oxides as catalyst and ethylenediamine(EDA) as carbon/nitrogen precursor. The influence of growth time,EDA concentration and growth temperature on the morphology,yield,composition,graphitization and oxidation resistance of the NCNTs was systematically investigated by using Raman spectroscopy,temperature-programmed oxidation and other techniques. The NCNT growth from ethylenediamine with a high N/C ratio involves several processes including mainly(1) catalytic growth of NCNTs,(2) homogeneous gas-phase decomposition of EDA,(3) non-catalytic deposition of pyrolytic carbon/nitrogen species and(4)surface etching of amorphous carbon or carbon at defect sites through gasification. At a later growth stage the etching process appears to be dominating,leading to the thinning of nanotubes and the decrease of yield.Moreover,the surface etching through carbon gasification strongly influences the structure and degree of graphitization of NCNTs.展开更多
RuO2 nanoparticles supported on multi-walled carbon nanotubes(CNTs) functionalized with oxygen(OCNTs) and nitrogen(NCNTs) were employed for the oxygen evolution reaction(OER) in 0.1 M KOH.The catalysts were sy...RuO2 nanoparticles supported on multi-walled carbon nanotubes(CNTs) functionalized with oxygen(OCNTs) and nitrogen(NCNTs) were employed for the oxygen evolution reaction(OER) in 0.1 M KOH.The catalysts were synthesized by metal-organic chemical vapor deposition using ruthenium carbonyl(Ru3(CO)(12)) as Ru precursor. The obtained RuO2/OCNT and RuO2/NCNT composites were characterized using TEM, H2-TPR, XRD and XPS in order probe structure–activity correlations, particularly, the effect of the different surface functional groups on the electrochemical OER performance. The electrocatalytic activity and stability of the catalysts with mean RuO2 particle sizes of 13–14 nm was evaluated by linear sweep voltammetry, cyclic voltammetry, and chronopotentiometry, showing that the generation of nitrogen-containing functional groups on CNTs was beneficial for both OER activity and stability. In the presence of RuO2, carbon corrosion was found to be significantly less severe.展开更多
In this work,a novel in situ auto-reduction strategy was developed to encapsulate uniformly dispersed Pd clusters/nanoparticles in MIL-125-NH_(2).It is demonstrated that the amino groups in MIL-125-NH_(2)can react wit...In this work,a novel in situ auto-reduction strategy was developed to encapsulate uniformly dispersed Pd clusters/nanoparticles in MIL-125-NH_(2).It is demonstrated that the amino groups in MIL-125-NH_(2)can react with formaldehyde to form novel reducing groups(-NH-CH_(2)OH),which can in situ auto-reduce the encapsulated Pd^(2+)ions to metallic Pd clusters/nanoparticles.As no additional reductants are required,the strategy limits the aggregation and migration of Pd clusters and the formation of large Pd nanoparticles via controlling the amount of Pd^(2+)precursor.When applied as catalysts in the hydrogenation of phenol in the aqueous phase,the obtained Pd(1.5)/MIL-125-NH-CH_(2)OH catalyst with highly dispersed Pd clusters/nanoparticles with the size of around 2 nm exhibited 100%of phenol conversion and 100%of cyclohexanone selectivity at 70℃ after 5 h,as well as remarkable reusability for at least five cycles due to the large MOF surface area,the highly dispersed Pd clusters/nanoparticles and their excellent stability within the MIL-125-NH-CH_(2)OH framework.展开更多
基金supported by the Ministry of Economic Affairs,Innovation,Digitalization and Energy of the State of North Rhine-Westphalia,W041A。
文摘CO_(2) methanation using nickel-based catalysts has attracted large interest as a promising power-to-gas route.Ni nanoparticles supported on nitrogen-doped CNTs with Ni loadings in the range from 10 wt% to 50 wt% were synthesized by impregnation,calcination and reduction and characterized by elemental analysis,X-ray powder diffraction,H_(2) temperature-programmed reduction,CO pulse chemisorption and transmission electron microscopy.The Ni/NCNT catalysts were highly active in CO_(2) methanation at atmospheric pressure,reaching over 50% CO_(2) conversion and over 95% CH_(4) selectivity at 340℃ and a GHSV of50,000 mL g^(-1) h^(-1) under kinetically controlled conditions.The small Ni particle sizes below 10 nm despite the high Ni loading is ascribed to the efficient anchoring on the N-doped CNTs.The optimum loading of 30 wt%-40 wt% Ni was found to result in the highest Ni surface area,the highest degree of conversion and the highest selectivity to methane.A constant TOF of 0.3 s^(-1) was obtained indicating similar catalytic properties of the Ni nanoparticles in the range from 10 wt%to 50 wt% Ni loading.Long-term experiments showed that the Ni/NCNT catalyst with 30 wt% Ni was highly stable for 100 h time on stream.
基金supported by the Synchrotron Light Research Institute(Public Organization)Thailand(GS-54-D01)+7 种基金the Commission on Higher EducationMinistry of EducationThailandperformed under the project"Sustainable Chemical Synthesis(Sus Chem Sys)"which is co-financed by the European Regional Development Fund(ERDF)the state of North Rhine-WestphaliaGermanyunder the Operational Programme"Regional Competitiveness and Employment"2007–2013
文摘Nitrogen-doped carbon nanotubes (NCNTs) were used as a support for iron (Fe) nanoparticles applied in car- bon dioxide (CO_2) hydrogenation at 633 K and 25 bar (1 bar = 10-5 Pa). The Fe/NCNT catalyst promoted with both potassium (K) and manganese (Mn) showed high performance in CO_2 hydrogenation, reaching 34.9% conversion with a gas hourly space velocity (GHSV) of 3.1 L-(g·h)-1. Product selectivities were high for olefin products and low for short-chain alkanes for the K-promoted catalysts. When Fe/NCNT catalyst was promot- ed with both K and Mn, the catalytic activity was stable for 60 h of reaction time. The structural effect of the Mn promoter was demonstrated by X-ray diffraction (XRD), temperature-programmed reduction (TPR) with molecular hydrogen (H2), and in situ X-ray absorption near-edge structure (XANES) analysis. The Mn pro- moter stabilized wtistite (FeO) as an intermediate and lowered the TPR onset temperature. Catalytic ammo- nia (NH_3) decomposition was used as an additional probe reaction for characterizing the promoter effects. The Fe/NCNT catalyst promoted with both K and Mn had the highest catalytic activity, and the Mn-promoted Fe/NCNT catalysts had the highest thermal stability under reducing conditions.
文摘The influence of the drop-casted nickel boride catalyst loading on glassy carbon electrodes was investigated in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in alkaline glycerol electrooxidation.The continuously operated radial flow cell consisted of a borehole electrode positioned 50μm above an internal reflection element enabling operando FTIR spectroscopy.It is identified as a suitable tool for facile and reproducible screening of electrocatalysts under well-defined conditions,additionally providing access to the selectivities in complex reaction networks such as glycerol oxidation.The fast product identification by ATR-IR spectroscopy was validated by the more time-consuming quantitative HPLC analysis of the pumped electrolyte.High degrees of glycerol conversion were achieved under the applied laminar flow conditions using 0.1 M glycerol and 1 M KOH in water and a flow rate of 5μL min^(–1).Conversion and selectivity were found to depend on the catalyst loading,which determined the catalyst layer thickness and roughness.The highest loading of 210μg cm^(–2)resulted in 73%conversion and a higher formate selectivity of almost 80%,which is ascribed to longer residence times in rougher films favoring readsorption and C–C bond scission.The lowest loading of 13μg cm^(–2)was sufficient to reach 63%conversion,a lower formate selectivity of 60%,and,correspondingly,higher selectivities of C_(2)species such as glycolate amounting to 8%.Thus,only low catalyst loadings resulting in very thin films in the fewμm thickness range are suitable for reliable catalyst screening.
基金supported by the German Federal Ministry of Education and Research (BMBF) for the CarboKat Project (03X0204D) within the scope of the Inno.CNT Alliance
文摘Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Temperature-programmed desorption, N2 physisorption, Raman spectroscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were employed to characterize the surface properties of OCNTs and NCNTs, aiming at a detailed analysis of the type and amount of oxygen- and nitrogen-containing groups as well as surface defects. The gas-phase treatments applied for oxygen and nitrogen functionalization at elevated temperatures up to 600 ℃ led to the increase of surface defects, but did not cause structural damages in the bulk. NCNTs showed a clearly higher activity than the pristine CNTs and OCNTs in the hydrogenation of 1,5-cyclooctadiene, and also the selectivity to cyclooctene was higher. The favorable catalytic properties are ascribed to the nitrogen-containing surface functional groups as well as surface defects related to nitrogen species. In contrast, oxygen-containing surface groups and the surface defects caused by oxygen species did not show clear contribution to the hydrogenation catalysis.
基金supported by the National Natural Science Foundation of China(21073023 and 20906008)the Fundamental Research Funds for the Central Universities(DUT12YQ03)the CSC and DAAD for a Project Based Personnel Exchange Program
文摘A direct strategy for the creation of defects on carbon nanofibers (CNFs) has been developed by steam treatment.Nitrogen physisorption,XRD,Raman spectra,SEM and TEM analyses proved the existence of the new defects on CNFs.BET surface area of CNFs after steam treatment was enhanced from 20 to 378 m2/g.Pd catalysts supported on CNFs were also prepared by colloidal deposition method.The different activity of Pd/CNFs catalysts in the partial hydrogenation of phenylacetylene further demonstrated the diverse surfaces of CNFs could be formed by steam treatment.
基金funded by the Federal Ministry of Education and Research(Bundesministerium für Bildung und Forschung,BMBF,Verbundvorhaben Carbon2Chem■,FKZ:03EK3041)
文摘Co-Cu-based catalysts are widely applied in higher alcohol synthesis (HAS) from synthesis gas. Although the nature of the active sites is still not fully understood, the formation of Co2C under HAS conditions seems to play a major role. A CO pretreatment procedure was developed allowing a systematic investigation of the influence of cobalt carbidization on the structural properties and catalytic performance of the catalysts. By exposing the catalyst to a CO-containing atmosphere prior to HAS, Co enrichment of the catalyst surface occurred followed by carbide formation. This surface modification decreased the formation of hydrocarbons and enhanced the formation of C2+OH. The catalyst pretreated with CO at 20 bar achieved the highest selectivity to ethanol and the lowest hydrocarbon selectivity.
基金This research was funded by the National Natural Science Foundation of China(21976054)the Fundamental Research Funds for the Central Universities(2020MS036)the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)within the collaborative research centre/transregio 247"Heterogeneous Oxidation Catalysis in the Liquid Phase,f.
文摘Photocatalytic oxidation of alcohols has received more and more attention in recent years following the numerous studies on the degradation of pollutants, hydrogen evolution, and CO_(2) reduction by photocatalysis. Instead of the total oxidation of organics in the degradation process, the photo-oxidation of alcohols aims at the selective conversion of alcohols to produce carbonyl/acid compounds. Promising results have been achieved in designing the catalysts and reaction system, as well as in the mechanistic investigations in the past few years. This review summarizes the state-of-the-art progress in the photo-oxidation of alcohols, including the development of photocatalysts and cocatalysts, reaction conditions including the solvent and the atmosphere, and the exploration of mechanisms with scavengers experiment, electron paramagnetic resonance (EPR) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The challenges and outlook for the further research in this field are also discussed.
基金the financial support from the National Natural Science Foundation of China (61574065)Science and Technology Planning Project of Guangdong Province (2016B090906004, 2016B090918083)+7 种基金the Special Fund Project of Science and Technology Application in Guangdong (2017B020240002)graduate student abroad joint training project of South China Normal Universitypartially supported by PCSIRT Project No.IRT_17R40Guangdong Provincial Key Laboratory of Optical Information Materials and Technology (No.2017B030301007)MOE International Laboratory for Optical Information TechnologiesShenzhen Science and Technology Plan (No.JSGG20170414143009027)National 111 ProjectGuangdong Innovative Research Team Program (No.2013C102)
文摘Synthesis of silver nanoparticles(Ag NPs) with state-of-the-art chemical or photo-reduction methods generally takes several steps and requires both reducing agents and stabilizers to obtain NPs with narrow size distribution.Herein, we report a novel method to synthesize Ag NPs rapidly in one step, achieving typical particle sizes in the range from 5 to 15 nm.The synthesis steps only involve three chemicals without any reducing agent: AgNO3 as precursor, polyvinylpyrrolidone(PVP) as stabilizer, and AgCl as photocatalyst.The Ag NPs were supported on carbon and showed excellent performance in thermal catalytic pnitrophenol reduction and nitrobenzene hydrogenation, and as electrocatalyst for the oxygen reduction reaction.
基金supported by the German Federal Ministry of Education and Research(BMBF) through the Project "Carbo Elch"(Grant 03X0207C) within the scope of the Inno.CNT Alliancethe IMPRS-Sur Mat of the Max-Planck Society
文摘Nitrogen-doped carbon nanotubes(NCNTs) were synthesized by chemical vapor deposition using cobaltbased oxides as catalyst and ethylenediamine(EDA) as carbon/nitrogen precursor. The influence of growth time,EDA concentration and growth temperature on the morphology,yield,composition,graphitization and oxidation resistance of the NCNTs was systematically investigated by using Raman spectroscopy,temperature-programmed oxidation and other techniques. The NCNT growth from ethylenediamine with a high N/C ratio involves several processes including mainly(1) catalytic growth of NCNTs,(2) homogeneous gas-phase decomposition of EDA,(3) non-catalytic deposition of pyrolytic carbon/nitrogen species and(4)surface etching of amorphous carbon or carbon at defect sites through gasification. At a later growth stage the etching process appears to be dominating,leading to the thinning of nanotubes and the decrease of yield.Moreover,the surface etching through carbon gasification strongly influences the structure and degree of graphitization of NCNTs.
基金the IMPRS-Sur Mat of the Max Planck Society for a research grant
文摘RuO2 nanoparticles supported on multi-walled carbon nanotubes(CNTs) functionalized with oxygen(OCNTs) and nitrogen(NCNTs) were employed for the oxygen evolution reaction(OER) in 0.1 M KOH.The catalysts were synthesized by metal-organic chemical vapor deposition using ruthenium carbonyl(Ru3(CO)(12)) as Ru precursor. The obtained RuO2/OCNT and RuO2/NCNT composites were characterized using TEM, H2-TPR, XRD and XPS in order probe structure–activity correlations, particularly, the effect of the different surface functional groups on the electrochemical OER performance. The electrocatalytic activity and stability of the catalysts with mean RuO2 particle sizes of 13–14 nm was evaluated by linear sweep voltammetry, cyclic voltammetry, and chronopotentiometry, showing that the generation of nitrogen-containing functional groups on CNTs was beneficial for both OER activity and stability. In the presence of RuO2, carbon corrosion was found to be significantly less severe.
基金financial support from the National Natural Science Foundation of China(Grant No.51802015)the Research Department Closed Carbon Cycle Economy(CCCE)at the Ruhr-University Bochum,Fundamental Research Funds for the Central Universities(No.FRF-TP-20-005A3)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange&Growth Program(Grant No.QNXM20210016)。
文摘In this work,a novel in situ auto-reduction strategy was developed to encapsulate uniformly dispersed Pd clusters/nanoparticles in MIL-125-NH_(2).It is demonstrated that the amino groups in MIL-125-NH_(2)can react with formaldehyde to form novel reducing groups(-NH-CH_(2)OH),which can in situ auto-reduce the encapsulated Pd^(2+)ions to metallic Pd clusters/nanoparticles.As no additional reductants are required,the strategy limits the aggregation and migration of Pd clusters and the formation of large Pd nanoparticles via controlling the amount of Pd^(2+)precursor.When applied as catalysts in the hydrogenation of phenol in the aqueous phase,the obtained Pd(1.5)/MIL-125-NH-CH_(2)OH catalyst with highly dispersed Pd clusters/nanoparticles with the size of around 2 nm exhibited 100%of phenol conversion and 100%of cyclohexanone selectivity at 70℃ after 5 h,as well as remarkable reusability for at least five cycles due to the large MOF surface area,the highly dispersed Pd clusters/nanoparticles and their excellent stability within the MIL-125-NH-CH_(2)OH framework.