Photometric stereo is a fundamental technique in computer vision known to produce 3D shape with high accuracy. It uses several input images of a static scene taken from one and the same camera position but under varyi...Photometric stereo is a fundamental technique in computer vision known to produce 3D shape with high accuracy. It uses several input images of a static scene taken from one and the same camera position but under varying illumination. The vast majority of studies in this 3D reconstruction method assume orthographic projection for the camera model.In addition, they mainly use the Lambertian reflectance model as the way that light scatters at surfaces.Thus, providing reliable photometric stereo results from real world objects still remains a challenging task. We address 3D reconstruction by use of a more realistic set of assumptions, combining for the first time the complete Blinn–Phong reflectance model and perspective projection. Furthermore, we compare two different methods of incorporating the perspective projection into our model. Experiments are performed on both synthetic and real world images; the latter do not benefit from laboratory conditions. The results show the high potential of our method even for complex real world applications such as medical endoscopy images which may include many specular highlights.展开更多
基金supported by the Deutsche Forschungsgemeinschaft under grant number BR2245/4–1
文摘Photometric stereo is a fundamental technique in computer vision known to produce 3D shape with high accuracy. It uses several input images of a static scene taken from one and the same camera position but under varying illumination. The vast majority of studies in this 3D reconstruction method assume orthographic projection for the camera model.In addition, they mainly use the Lambertian reflectance model as the way that light scatters at surfaces.Thus, providing reliable photometric stereo results from real world objects still remains a challenging task. We address 3D reconstruction by use of a more realistic set of assumptions, combining for the first time the complete Blinn–Phong reflectance model and perspective projection. Furthermore, we compare two different methods of incorporating the perspective projection into our model. Experiments are performed on both synthetic and real world images; the latter do not benefit from laboratory conditions. The results show the high potential of our method even for complex real world applications such as medical endoscopy images which may include many specular highlights.