期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Osteoconductivity of Hydrophilic Surfaces of Zr-9Nb-3Sn Alloy with Hydrothermal Treatment 被引量:1
1
作者 Mansjur Zuldesmi Kensuke Kuroda +2 位作者 Masazumi Okido Masato Ueda masahiko ikeda 《Journal of Biomaterials and Nanobiotechnology》 2015年第3期126-134,共9页
Zirconium and its alloys are more suitable materials for implant surgery to be performed in a magnetic resonance imaging scanner compared with other implant materials. Although they have high anticorrosion properties ... Zirconium and its alloys are more suitable materials for implant surgery to be performed in a magnetic resonance imaging scanner compared with other implant materials. Although they have high anticorrosion properties in the body, as do titanium and its alloys, they have little use as implants in contact with bone because of their low osteoconductivity (bone-implant contact ratio). To improve the osteoconductivity of zirconium, niobium, and Zr-9Nb-3Sn alloy, we applied a single- step hydrothermal surface treatment using distilled water at a temperature of 180°C for 3 h. The hydrothermally treated samples were stored in a ×5 phosphate-buffered saline (PBS(-)) solution to keep or to improve the water contact angle (WCA), which has a strongly positive effect on osteoconductivity. The specimen surfaces were characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, surface roughness, and contact angle measurement using a 2 μL droplet of distilled water. The relationship between WCA and osteoconductivity for various surface modifications was examined using in vivo tests. The results showed that a superhydrophilic surface with a WCA ≤ 10° and a high osteoconductivity of up to 40% in cortical bone, about four times higher than the as-polished Zr-9Nb-3Sn and its pure alloy elements, was provided by the combination of hydrothermal surface treatment and storage in ×5 PBS(-). 展开更多
关键词 ZIRCONIUM ALLOYS HYDROTHERMAL HYDROPHILIC in VIVO OSTEOCONDUCTIVITY
下载PDF
The Function of Roots of Tea Plant (<i>Camellia sinensis</i>) Cultured by a Novel Form of Hydroponics and Soil Acidification
2
作者 Kieko Saito masahiko ikeda 《American Journal of Plant Sciences》 2012年第5期646-648,共3页
A novel form of hydroponic culture was employed to explore the physiological function of roots of a tea plant (Camellia sinensis). The pH of the nutrient solution with an actively growing tea plant decreased during cu... A novel form of hydroponic culture was employed to explore the physiological function of roots of a tea plant (Camellia sinensis). The pH of the nutrient solution with an actively growing tea plant decreased during cultivation. Furthermore, no oxalic acid, tartaric acid, malic acid or citric acid, all possible factors in acidification, was detected in the nutrient solution of a growing plant. A proton pump inhibitor suppressed the acidification of the solution. Soil acidification might have been accelerated with a proton released from ammoniacal nitrogen preferentially for the growth, suggesting the specific mechanism of tea plant as a functional food. 展开更多
关键词 ACID Soil HYDROPONIC Culture Organic ACID Tea Root
下载PDF
Influence of Alloy Elements on the Osteoconductivity of Anodized Ti-29Nb-13Ta-4.6Zr Alloy
3
作者 Dai Yamamoto Atsushi Waki +6 位作者 Kensuke Kuroda Ryoichi Ichino Masazumi Okido Masato Ueda masahiko ikeda Mitsuo Niinomi Azusa Seki 《Journal of Biomaterials and Nanobiotechnology》 2013年第3期229-236,共8页
Anodizing is expected to be an effective method to improve the osteoconductivity of the Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy because the bioactivity of anodized Ti is good. However, it is not known how the alloy elements i... Anodizing is expected to be an effective method to improve the osteoconductivity of the Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy because the bioactivity of anodized Ti is good. However, it is not known how the alloy elements influence the surface roughness, composition, hydrophilicity, and osteoconductivity of the anodized film on the Ti alloy. In this study, we investigated the effects of anodizing on the surface properties and the osteoconductivity of the anodized TNTZ alloy, focusing on the functions of the individual alloy elements. The anodized oxides of the Nb, Ta, and Zr metals were hydrophobic at all the voltages applied, in contrast to the anodized oxide of Ti. As well as pure Ti, a TiO2-based oxide film formed on TNTZ after anodizing. However, the oxide film also contained large amounts of Nb species and the molar Nb/Ti ratio in the TNTZ alloy was high, which makes the surface more hydrophobic than the anodized oxide on Ti. In vivo tests showed that the osteoconductivity of the TNTZ alloy was sensitive to both its surface roughness and hydrophilicity. When the TNTZ alloy was anodized, the process increased either the surface hydrophobicity or the surface roughness at the voltage used in this study. These changes in the surface properties did not improve its osteoconductivity. 展开更多
关键词 Ti-29Nb-13Ta-4.6Zr ANODIZING Titanium Dioxide ALLOY Element HYDROPHILICITY OSTEOCONDUCTIVITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部