期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Improving the performance of conventional base isolation systems by an external variable negative stiffness device under near-fault and long-period ground motions 被引量:8
1
作者 Sandhya Nepal masato saitoh 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第4期985-1003,共19页
Recent studies have shown that base-isolated objects with long fundamental natural periods are highly influenced by long-period earthquakes. These long-period waves result in large displacements for isolators, possibl... Recent studies have shown that base-isolated objects with long fundamental natural periods are highly influenced by long-period earthquakes. These long-period waves result in large displacements for isolators, possibly leading to exceedance of the allowable displacement limits. Conventional isolation systems, in general, fail to resist such large displacements. This has prompted the need to modify conventional base isolation systems. The current work focuses on the development of an external device, comprising a unit of negative and positive springs, for improving the performance of conventional base isolation systems. This unit accelerates the change in the stiffness of the isolation system where the stiffness of the positive spring varies linearly in terms of the displacement response of the isolated objects. The target objects of the present study are small structures such as computer servers, sensitive instruments and machinery. Numerical studies show that the increase in the damping of the system and the slope of the linear function is effective in reducing the displacement response. An optimal range of damping values and slope, satisfying the stability condition and the allowable limits of both displacement and acceleration responses when the system is subjected to near-fault and long-period ground motions simultaneously, is proposed. 展开更多
关键词 base isolation near-fault earthquakes long-period earthquakes negative stiffness variable stiffness
下载PDF
Model tests and numerical analyses on horizontal impedance functions of inclined single piles embedded in cohesionless soil 被引量:2
2
作者 Chandra Shekhar Goit masato saitoh 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第1期143-154,共12页
Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinat... Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinations of 5掳 and 10掳 in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered.Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles.Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases.Distinct values of horizontal impedance functions are obtained for the 'positive' and 'negative' cycles of harmonic loadings,leading to asymmetric force-displacement relationships for the inclined piles.Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses,and the results from the numerical models are in good agreement with the experimental data.Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems. 展开更多
关键词 inclined single piles harmonic loads horizontal impedance functions local nonlinearity finite element model
下载PDF
Vertical impedance functions of pile groups under low-to-high loading amplitudes:numerical simulations and experimental validation 被引量:1
3
作者 Usama Zafar Chandra Shekhar Goit +1 位作者 masato saitoh Riku Fukuda 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期647-666,共20页
Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elasti... Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elastic and/or viscoelastic material on pile head impedance functions of the pile group is studied by relating the group stiffness to the static stiffness of a single pile.However,the prevailing elastic solutions may misestimate the resulting pile group response due to the lack of consideration for either soil(material)and/or soil-pile interface nonlinearities.It is well established that soil behaves nonlinearly under moderate-to-high loading amplitudes,and besides,the soil-pile interface nonlinearity can exist even at small loading amplitudes.This study addresses the effects of these nonlinearities on the vertical impedance functions of a 3×3-pile group using numerical methods by direct analyses and superposition using pile-to-pile interaction factors.The numerical results are validated using scaled model tests under 1 g conditions.The results highlight the overestimation of pile-to-pile interactions in the pile group when assuming elastic soil conditions.The cases either by direct analyses or superposition approach involving soil and soil-pile interface nonlinearities agree well with the experimental pile group responses under close-to-elastic and nonlinear conditions. 展开更多
关键词 impedance functions numerical simulations model-scale experiment superposition approach soil-pile interface nonlinearity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部