The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,whi...The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019.展开更多
One of the most complex tasks for computer-aided diagnosis(Intelligent decision support system)is the segmentation of lesions.Thus,this study proposes a new fully automated method for the segmentation of ovarian and b...One of the most complex tasks for computer-aided diagnosis(Intelligent decision support system)is the segmentation of lesions.Thus,this study proposes a new fully automated method for the segmentation of ovarian and breast ultrasound images.The main contributions of this research is the development of a novel Viola–James model capable of segmenting the ultrasound images of breast and ovarian cancer cases.In addition,proposed an approach that can efficiently generate region-of-interest(ROI)and new features that can be used in characterizing lesion boundaries.This study uses two databases in training and testing the proposed segmentation approach.The breast cancer database contains 250 images,while that of the ovarian tumor has 100 images obtained from several hospitals in Iraq.Results of the experiments showed that the proposed approach demonstrates better performance compared with those of other segmentation methods used for segmenting breast and ovarian ultrasound images.The segmentation result of the proposed system compared with the other existing techniques in the breast cancer data set was 78.8%.By contrast,the segmentation result of the proposed system in the ovarian tumor data set was 79.2%.In the classification results,we achieved 95.43%accuracy,92.20%sensitivity,and 97.5%specificity when we used the breast cancer data set.For the ovarian tumor data set,we achieved 94.84%accuracy,96.96%sensitivity,and 90.32%specificity.展开更多
Heart disease(HD)is a serious widespread life-threatening disease.The heart of patients with HD fails to pump sufcient amounts of blood to the entire body.Diagnosing the occurrence of HD early and efciently may preven...Heart disease(HD)is a serious widespread life-threatening disease.The heart of patients with HD fails to pump sufcient amounts of blood to the entire body.Diagnosing the occurrence of HD early and efciently may prevent the manifestation of the debilitating effects of this disease and aid in its effective treatment.Classical methods for diagnosing HD are sometimes unreliable and insufcient in analyzing the related symptoms.As an alternative,noninvasive medical procedures based on machine learning(ML)methods provide reliable HD diagnosis and efcient prediction of HD conditions.However,the existing models of automated ML-based HD diagnostic methods cannot satisfy clinical evaluation criteria because of their inability to recognize anomalies in extracted symptoms represented as classication features from patients with HD.In this study,we propose an automated heart disease diagnosis(AHDD)system that integrates a binary convolutional neural network(CNN)with a new multi-agent feature wrapper(MAFW)model.The MAFW model consists of four software agents that operate a genetic algorithm(GA),a support vector machine(SVM),and Naïve Bayes(NB).The agents instruct the GA to perform a global search on HD features and adjust the weights of SVM and BN during initial classication.A nal tuning to CNN is then performed to ensure that the best set of features are included in HD identication.The CNN consists of ve layers that categorize patients as healthy or with HD according to the analysis of optimized HD features.We evaluate the classication performance of the proposed AHDD system via 12 common ML techniques and conventional CNN models by using across-validation technique and by assessing six evaluation criteria.The AHDD system achieves the highest accuracy of 90.1%,whereas the other ML and conventional CNN models attain only 72.3%–83.8%accuracy on average.Therefore,the AHDD system proposed herein has the highest capability to identify patients with HD.This system can be used by medical practitioners to diagnose HD efciently。展开更多
文摘The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019.
文摘One of the most complex tasks for computer-aided diagnosis(Intelligent decision support system)is the segmentation of lesions.Thus,this study proposes a new fully automated method for the segmentation of ovarian and breast ultrasound images.The main contributions of this research is the development of a novel Viola–James model capable of segmenting the ultrasound images of breast and ovarian cancer cases.In addition,proposed an approach that can efficiently generate region-of-interest(ROI)and new features that can be used in characterizing lesion boundaries.This study uses two databases in training and testing the proposed segmentation approach.The breast cancer database contains 250 images,while that of the ovarian tumor has 100 images obtained from several hospitals in Iraq.Results of the experiments showed that the proposed approach demonstrates better performance compared with those of other segmentation methods used for segmenting breast and ovarian ultrasound images.The segmentation result of the proposed system compared with the other existing techniques in the breast cancer data set was 78.8%.By contrast,the segmentation result of the proposed system in the ovarian tumor data set was 79.2%.In the classification results,we achieved 95.43%accuracy,92.20%sensitivity,and 97.5%specificity when we used the breast cancer data set.For the ovarian tumor data set,we achieved 94.84%accuracy,96.96%sensitivity,and 90.32%specificity.
文摘Heart disease(HD)is a serious widespread life-threatening disease.The heart of patients with HD fails to pump sufcient amounts of blood to the entire body.Diagnosing the occurrence of HD early and efciently may prevent the manifestation of the debilitating effects of this disease and aid in its effective treatment.Classical methods for diagnosing HD are sometimes unreliable and insufcient in analyzing the related symptoms.As an alternative,noninvasive medical procedures based on machine learning(ML)methods provide reliable HD diagnosis and efcient prediction of HD conditions.However,the existing models of automated ML-based HD diagnostic methods cannot satisfy clinical evaluation criteria because of their inability to recognize anomalies in extracted symptoms represented as classication features from patients with HD.In this study,we propose an automated heart disease diagnosis(AHDD)system that integrates a binary convolutional neural network(CNN)with a new multi-agent feature wrapper(MAFW)model.The MAFW model consists of four software agents that operate a genetic algorithm(GA),a support vector machine(SVM),and Naïve Bayes(NB).The agents instruct the GA to perform a global search on HD features and adjust the weights of SVM and BN during initial classication.A nal tuning to CNN is then performed to ensure that the best set of features are included in HD identication.The CNN consists of ve layers that categorize patients as healthy or with HD according to the analysis of optimized HD features.We evaluate the classication performance of the proposed AHDD system via 12 common ML techniques and conventional CNN models by using across-validation technique and by assessing six evaluation criteria.The AHDD system achieves the highest accuracy of 90.1%,whereas the other ML and conventional CNN models attain only 72.3%–83.8%accuracy on average.Therefore,the AHDD system proposed herein has the highest capability to identify patients with HD.This system can be used by medical practitioners to diagnose HD efciently。