Investigation of dynamic properties of carbonate/calcareous soils is important in earthquake and offshore engineering as these soils are commonly encountered in large-scale projects related with energy geomechanics an...Investigation of dynamic properties of carbonate/calcareous soils is important in earthquake and offshore engineering as these soils are commonly encountered in large-scale projects related with energy geomechanics and land reclamation.In this study,the stiffness and stiffness anisotropy of two types of calcareous sands(CS)from the Western Australia and the Philippines were examined using bender elements configured in different directions in stress path setups.Stiffness measurements were taken on specimens subjected to constant p’compression/extension and biaxial stress paths and additional tests were performed on three types of silica sands with different geological origins and particle shapes,which were used as benchmark materials in the study.Compared with the three brands of silica sands,the stiffness of the CS was found to be more significantly influenced by anisotropic loading;an important observation of the experimental results was that stress anisotropy had different weighted influences on the stiffness in different directions,thus influencing stiffness anisotropy.Comparisons were made between the specimens subjected to complex loading paths,and respected model parameters as suggested from published expressions in the literature.These comparisons further highlighted that calcareous soils have different responses in terms of stiffness,stiffness anisotropy and loading history,compared with that of silica-based sands.展开更多
The development of a miniature triaxial apparatus is presented.In conjunction with an X-ray microtomography(termed as X-ray fiCT hereafter)facility and advanced image processing techniques,this apparatus can be used f...The development of a miniature triaxial apparatus is presented.In conjunction with an X-ray microtomography(termed as X-ray fiCT hereafter)facility and advanced image processing techniques,this apparatus can be used for in situ investigation of the micro-scale mechanical behavior of granular soils under shear.The apparatus allows for triaxial testing of a miniature dry sample with a size of 8 mm x 16 mm(diameter x height).In situ triaxial testing of a 0.4-0.8 mm Leighton Buzzard sand(LBS)under a constant confining pressure of 500 kPa is presented.The evolutions of local porosities(i.e.,the porosities of regions associated with individual particles),particle kinematics(i.e.,particle translation and particle rotation)of the sample during the shear are quantitatively studied using image processing and analysis techniques.Meanwhile,a novel method is presented to quantify the volumetric strain distribution of the sample based on the results of local porosities and particle tracking.It is found that the sample,with nearly homogenous initial local porosities,starts to exhibit obvious inhomogeneity of local porosities and localization of particle kinematics and volumetric strain around the peak of deviatoric stress.In the post-peak shear stage,large local porosities and volumetric dilation mainly occur in a localized band.The developed triaxial apparatus,in its combined use of X-ray|iCT imaging techniques,is a powerful tool to investigate the micro-scale mechanical behavior of granular soils.展开更多
基金the Research Grants Council of the Hong Kong Special Administrative Region,China(Grant No.City U 11210419)the Natural Science Foundation of Jiangsu Province(Grant No.BK20200405)the National Natural Science Foundation of China(Grant No.52008098)。
文摘Investigation of dynamic properties of carbonate/calcareous soils is important in earthquake and offshore engineering as these soils are commonly encountered in large-scale projects related with energy geomechanics and land reclamation.In this study,the stiffness and stiffness anisotropy of two types of calcareous sands(CS)from the Western Australia and the Philippines were examined using bender elements configured in different directions in stress path setups.Stiffness measurements were taken on specimens subjected to constant p’compression/extension and biaxial stress paths and additional tests were performed on three types of silica sands with different geological origins and particle shapes,which were used as benchmark materials in the study.Compared with the three brands of silica sands,the stiffness of the CS was found to be more significantly influenced by anisotropic loading;an important observation of the experimental results was that stress anisotropy had different weighted influences on the stiffness in different directions,thus influencing stiffness anisotropy.Comparisons were made between the specimens subjected to complex loading paths,and respected model parameters as suggested from published expressions in the literature.These comparisons further highlighted that calcareous soils have different responses in terms of stiffness,stiffness anisotropy and loading history,compared with that of silica-based sands.
基金This study was supported by the General Research Fund(No.CityU 11272916)from the Research Grant Council of the Hong Kong SAR,Research from the National Science Foundation of China(Grant No.51779213)+2 种基金the Open-Research from State Key Laboratory of Civil Engineering Disaster Prevention of Tongji University(No.SLDRCE15-04)the BLI3W beam-line of Shanghai Synchrotron Radiation Facility(SSRF)The authors would like to thank Dr.Edward Ando in Universite Grenoble Alpes for providing his PhD thesis.
文摘The development of a miniature triaxial apparatus is presented.In conjunction with an X-ray microtomography(termed as X-ray fiCT hereafter)facility and advanced image processing techniques,this apparatus can be used for in situ investigation of the micro-scale mechanical behavior of granular soils under shear.The apparatus allows for triaxial testing of a miniature dry sample with a size of 8 mm x 16 mm(diameter x height).In situ triaxial testing of a 0.4-0.8 mm Leighton Buzzard sand(LBS)under a constant confining pressure of 500 kPa is presented.The evolutions of local porosities(i.e.,the porosities of regions associated with individual particles),particle kinematics(i.e.,particle translation and particle rotation)of the sample during the shear are quantitatively studied using image processing and analysis techniques.Meanwhile,a novel method is presented to quantify the volumetric strain distribution of the sample based on the results of local porosities and particle tracking.It is found that the sample,with nearly homogenous initial local porosities,starts to exhibit obvious inhomogeneity of local porosities and localization of particle kinematics and volumetric strain around the peak of deviatoric stress.In the post-peak shear stage,large local porosities and volumetric dilation mainly occur in a localized band.The developed triaxial apparatus,in its combined use of X-ray|iCT imaging techniques,is a powerful tool to investigate the micro-scale mechanical behavior of granular soils.