Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest ...Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest growth and yield, succession and carbon budget models. However, the diameter at breast height (dbh) can be more accurately obtained and at lower cost, than total tree height. Hence, generalized height-diameter (h-d) models that predict tree height from dbh, age and other covariates are needed. For a more flexible but biologically plausible estimation of covariate effects we use shape constrained generalized additive models as an extension of existing h-d model approaches. We use causal site parameters such as index of aridity to enhance the generality and causality of the models and to enable predictions under projected changeable climatic conditions. Methods: We develop unconstrained generalized additive models (GAM) and shape constrained generalized additive models (SCAM) for investigating the possible effects of tree-specific parameters such as tree age, relative diameter at breast height, and site-specific parameters such as index of aridity and sum of daily mean temperature during vegetation period, on the h-d relationship of forests in Lower Saxony, Germany. Results: Some of the derived effects, e.g. effects of age, index of aridity and sum of daily mean temperature have significantly non-linear pattern. The need for using SCAM results from the fact that some of the model effects show partially implausible patterns especially at the boundaries of data ranges. The derived model predicts monotonically increasing levels of tree height with increasing age and temperature sum and decreasing aridity and social rank of a tree within a stand, The definition of constraints leads only to marginal or minor decline in the model statistics like AIC An observed structured spatial trend in tree height is modelled via 2-dimensional surface fitting. Conclusions: We demonstrate that the SCAM approach allows optimal regression modelling flexibility similar to the standard GAM but with the additional possibility of defining specific constraints for the model effects. The longitudinal character of the model allows for tree height imputation for the current status of forests but also for future tree height prediction.展开更多
Patients with advanced esophageal cancer(T3-4, N) have a poor prognosis. Chemoradiation or chemotherapy before esophagectomy with adequate lymphadenectomy is the standard treatment for patients with resectable advan...Patients with advanced esophageal cancer(T3-4, N) have a poor prognosis. Chemoradiation or chemotherapy before esophagectomy with adequate lymphadenectomy is the standard treatment for patients with resectable advanced esophageal carcinoma. However, only patients with major histopathologic response(regression to less than 10% of the primary tumor) after preoperative treatment will have a prognostic benefit of preoperative chemoradiation. Using current therapy regimens about 40% to 50% of the patients show major histopathological response. The remaining cohort does not benefit from this neoadjuvant approach but might benefit from earlier surgical resection. Therefore, it is an aim to develop tools for response prediction before starting the treatment and for early response assessment identifying responders. The current review discusses the different imaging techniques and the most recent studies about molecular markers for early response prediction. The results show that [^18F]-fluorodeoxyglucose-positron emission tomography(FDGPET) has a good sensitivity but the specificity is not robust enough for routine clinical use. Newer positron emission tomography detector technology, the combination of FDG-PET with computed tomography, additional evaluation criteria and standardization of evaluation may improve the predictive value. There exist a great number of retrospective studies using molecular markers for prediction of response. Until now the clinical use is missing. But the results of first prospective studies are promising. A future perspective may be the combination of imaging technics and special molecular markers for individualized therapy. Another aspect is the response assessment after finishing neoadjuvant treatment protocol. The different clinical methods are discussed. The results show that until now no non-invasive method is valid enough to assess complete histopathological response.展开更多
Using political ecology as its conceptual framework,this paper focuses on the changes in forest utilisation and management of South Kyrgyzstan’s walnut-fruit forests over the last century. The aim of this study on hu...Using political ecology as its conceptual framework,this paper focuses on the changes in forest utilisation and management of South Kyrgyzstan’s walnut-fruit forests over the last century. The aim of this study on human-environment interactions is to investigate the relationship between actors on the one side,their interests and demands,and the forests and forested lands on the other. Forest resource utilisation and management — and even the recognition of different forest products as resources — are connected with political and socio-economic conditions that change with time. The walnut-fruit forests of South Kyrgyzstan are unique,characterised by high biodiversity and a multiplicity of usable products;and they have been utilised for a long time. Centralised and formal management of the forests started with the Russian occupation and was strengthened under Soviet rule,when the region became a part of the USSR. During this era,a state forest administration that was structured from Moscow all the way down to the local level drew up detailed plans and developed procedures for utilising the different forest products. Since the collapse of the Soviet Union,the socio-political and economic frame conditions have changed significantly,which has brought not only the sweeping changes in the managing institutions,but also the access rights and interests in the forest resources. At present,the region is suffering from a high unemployment rate,which has resulted in the forests’ gaining considerable importance in the livelihood strategies of the local population. Political and economic liberalization,increased communication and trans-regional exchange relations have opened the door for international companies and agents interested in the valuable forest products. Today,walnut wood and burls,walnuts,wild apples and mushrooms are all exported to various countries in the world. Scientists and members of various international organisations stress the ecological value of the forests and are trying to establish nature conservation areas. Nevertheless,it is to fear that a multiplicity of interrelated factors — the present transformation and globalization processes,the appearance of new actors,the local population’s insecure economic situation and the erosion of managing institutions — are all leading to an intensified and unregulated exploitation of the forests,resulting in their degradation.展开更多
Background: Forest management decisions are based on expectations of future developments. For sound decisions it is essential to accurately predict the expected values in future developments and to account for their i...Background: Forest management decisions are based on expectations of future developments. For sound decisions it is essential to accurately predict the expected values in future developments and to account for their inherent uncertainty,for example the impact of climate change on forests. Changing climatic conditions affect forest productivity and alter the risk profile of forests and forest enterprises. Intensifying drought stress is seen as one major risk factor threatening forest management in the north German lowlands. Drought stress reduces tree growth and vitality and might even trigger mortality. But so far, it is not possible to quantify effects of a persistent dryer climate on forest productivity at a level suitable for forest management.Methods: We apply a well-established single-tree forest growth simulator to quantify the effect of persistent dryer climates on future forest productivity. We analyse the growth of Scots pine(Pinus sylvestris L.), European beech(Fagus sylvatico L.) and oak(Quercus robur L. and Quercus petraea(Matt.) Liebl.) in two forest regions in the north German lowlands for a time interval of 60 years until 2070. The growth response under three different climate projections is compared to a baseline scenario.Results: The results show clear differences in volume increment to persistent dryer climates between tree species. The findings exhibit regional differences and temporal trends. While mean annual increment at biological rotation age of Scots pine and oak predominantly benefits from the projected climate conditions until 2070, beech might suffer losses of up to 3 m^3·ha^(-1)yr^(-1) depending on climate scenario and region. However, in the projection period2051 to 2070 the uncertainty ranges comprise positive as well as negative climatic effects for all species.Conclusions: The projected changes in forest growth serve as quantitative contributions to provide decision support in the evaluation of, for example, species future site suitability and timber supply assessments. The analysis of productivity changes under persistent dryer climate complements the drought vulnerability assessment which is applied in practical forestry in northwestern Germany today. The projected species' productivity has strong implications for forest management and the inherent uncertainty needs to be accounted for.展开更多
Background: Generalized height-diameter curves based on a re-parameterized version of the Korf function for Norway spruce (Piceo abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pe...Background: Generalized height-diameter curves based on a re-parameterized version of the Korf function for Norway spruce (Piceo abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) in Norwa are presented. The Norwegian National Forest Inventory (NFI) is used as data base for estimating the model parameters. The derived models are developed to enable spatially explicit and site sensitive tree height imputatio in forest inventories as well as future tree height predictions in growth and yield scenario simulations. Methods: Generalized additive mixed models (gamm) are employed to detect and quantify potentially non-linear effects of predictor variables. In doing so the quadratic mean diameter serves as longitudinal covariate since stand ag as measured in the NFI, shows only a weak correlation with a stands developmental status in Norwegian forests. Additionally the models can be locally calibrated by predicting random effects if measured height-diameter pairs are available. Based on the model selection of non-constraint models, shape constraint additive models (scare) were fit tc incorporate expert knowledge and intrinsic relationships by enforcing certain effect patterns like monotonicity. Results: Model comparisons demonstrate that the shape constraints lead to only marginal differences in statistical characteristics but ensure reasonable model predictions. Under constant constraints the developed models predict increasing tree heights with decreasing altitude, increasing soil depth and increasing competition pressure of a tree. / two-dimensional spatially structured effect of UTM-coordinates accounts for the potential effects of large scale spatial correlated covariates, which were not at our disposal. The main result of modelling the spatially structured effect is lower tree height prediction for coastal sites and with increasing latitude. The quadratic mean diameter affects both the level and the slope of the height-diameter curve and both effects are positive. Conclusions: In this investigation it is assumed that model effects in additive modelling of height-diameter curves which are unfeasible and too wiggly from an expert point of view are a result of quantitatively or qualitatively limited data bases. However, this problem can be regarded not to be specific to our investigation but more general since growth and yield data that are balanced over the whole data range with respect to all combinations of predictor variables are exceptional cases. Hence, scare may provide methodological improvements in several applications by combining the flexibility of additive models with expert knowledge.展开更多
Background: Winter moth(Operophtera brumata) and mottled umber moth(Erannis defoliaria) are forest Lepidoptera species characterized by periodic high abundance in a 7–11 year cycle. During outbreak years they cause s...Background: Winter moth(Operophtera brumata) and mottled umber moth(Erannis defoliaria) are forest Lepidoptera species characterized by periodic high abundance in a 7–11 year cycle. During outbreak years they cause severe defoliation in many forest stands in Europe. In order to better understand the spatio-temporal dynamics and elucidate possible influences of weather, stand and site conditions, a generalized additive mixed model was developed. The investigated data base was derived from glue band catch monitoring stands of both species in Central and North Germany. From the glue bands only female moth individuals are counted and a hazard code is calculated. The model can be employed to predict the exceedance of a warning threshold of this hazard code which indicates a potential severe defoliation of oak stands by winter moth and mottled umber in the coming spring.Results: The developed model accounts for specific temporal structured effects for three large ecoregions and random effects at stand level. During variable selection the negative model effect of pest control and the positive model effects of mean daily minimum temperature in adult stage and precipitation in early pupal stage were identified.Conclusion: The developed model can be used for short-term predictions of potential defoliation risk in Central and North Germany. These predictions are sensitive to weather conditions and the population dynamics. However, a future extension of the data base comprising further outbreak years would allow for deeper investigation of the temporal and regional patterns of the cyclic dynamics and their causal influences on abundance of winter moth and mottled umber.展开更多
Background: In this paper, a regression model for predicting the spatial distribution of forest cockchafer larvae in the Hessian Ried region (Germany) is presented. The forest cockchafer, a native biotic pest, is a...Background: In this paper, a regression model for predicting the spatial distribution of forest cockchafer larvae in the Hessian Ried region (Germany) is presented. The forest cockchafer, a native biotic pest, is a major cause of damage in forests in this region particularly during the regeneration phase. The model developed in this study is based on a systematic sample inventory of forest cockchafer larvae by excavation across the Hessian Ried. These forest cockchafer larvae data were characterized by excess zeros and overdispersion. Methods: Using specific generalized additive regression models, different discrete distributions, including the Poisson, negative binomial and zero-inflated Poisson distributions, were compared. The methodology employed allowed the simultaneous estimation of non-linear model effects of causal covariates and, to account for spatial autocorrelation, of a 2-dimensional spatial trend function. In the validation of the models, both the Akaike information criterion (AIC) and more detailed graphical procedures based on randomized quantile residuals were used. Results: The negative binomial distribution was superior to the Poisson and the zero-inflated Poisson distributions, providing a near perfect fit to the data, which was proven in an extensive validation process. The causal predictors found to affect the density of larvae significantly were distance to water table and percentage of pure clay layer in the soil to a depth of I m. Model predictions showed that larva density increased with an increase in distance to the water table up to almost 4 m, after which it remained constant, and with a reduction in the percentage of pure clay layer. However this latter correlation was weak and requires further investigation. The 2-dimensional trend function indicated a strong spatial effect, and thus explained by far the highest proportion of variation in larva density. Conclusions: As such the model can be used to support forest practitioners in their decision making for regeneration and forest protection planning in the Hessian predicting future spatial patterns of the larva density is still comparatively weak. Ried. However, the application of the model for somewhat limited because the causal effects are展开更多
Background: Forest management faces a climate induced shift in growth potential and increasing current and emerging new risks. Vulnerability analysis provides decision support based on projections of natural resources...Background: Forest management faces a climate induced shift in growth potential and increasing current and emerging new risks. Vulnerability analysis provides decision support based on projections of natural resources taking risks and uncertainties into account. In this paper we(1) characterize differences in forest dynamics under three management scenarios,(2) analyse the effects of the three scenarios on two risk factors, windthrow and drought stress, and(3) quantify the effects and the amount of uncertainty arising from climate projections on height increment and drought stress.Methods: In four regions in northern Germany, we apply three contrasting management scenarios and project forest development under climate change until 2070. Three climate runs(minimum, median, maximum) based on the emission scenario RCP 8.5 control the site-sensitive forest growth functions. The minimum and maximum climate run define the range of prospective climate development.Results: The projections of different management regimes until 2070 show the diverging medium-term effects of thinnings and harvests and long-term effects of species conversion on a regional scale. Examples of windthrow vulnerability and drought stress reveal how adaptation measures depend on the applied management path and the decision-maker’s risk attitude. Uncertainty analysis shows the increasing variability of drought risk projections with time. The effect of climate projections on height growth are quantified and uncertainty analysis reveals that height growth of young trees is dominated by the age-trend whereas the climate signal in height increment of older trees is decisive.Conclusions: Drought risk is a serious issue in the eastern regions independent of the applied silvicultural scenario,but adaptation measures are limited as the proportion of the most drought tolerant species Scots pine is already high. Windthrow risk is no serious overall threat in any region, but adequate counter-measures such as species conversion, species mixture or reduction of target diameter can be taken. This simulation study of three silvicultural scenarios and three climate runs spans a decision space of potential forest development to be used for decision making. Which adaptation measures to counteract climate induced risks and uncertainty are to be taken is,however, a matter of individual risk attitude.展开更多
文摘Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest growth and yield, succession and carbon budget models. However, the diameter at breast height (dbh) can be more accurately obtained and at lower cost, than total tree height. Hence, generalized height-diameter (h-d) models that predict tree height from dbh, age and other covariates are needed. For a more flexible but biologically plausible estimation of covariate effects we use shape constrained generalized additive models as an extension of existing h-d model approaches. We use causal site parameters such as index of aridity to enhance the generality and causality of the models and to enable predictions under projected changeable climatic conditions. Methods: We develop unconstrained generalized additive models (GAM) and shape constrained generalized additive models (SCAM) for investigating the possible effects of tree-specific parameters such as tree age, relative diameter at breast height, and site-specific parameters such as index of aridity and sum of daily mean temperature during vegetation period, on the h-d relationship of forests in Lower Saxony, Germany. Results: Some of the derived effects, e.g. effects of age, index of aridity and sum of daily mean temperature have significantly non-linear pattern. The need for using SCAM results from the fact that some of the model effects show partially implausible patterns especially at the boundaries of data ranges. The derived model predicts monotonically increasing levels of tree height with increasing age and temperature sum and decreasing aridity and social rank of a tree within a stand, The definition of constraints leads only to marginal or minor decline in the model statistics like AIC An observed structured spatial trend in tree height is modelled via 2-dimensional surface fitting. Conclusions: We demonstrate that the SCAM approach allows optimal regression modelling flexibility similar to the standard GAM but with the additional possibility of defining specific constraints for the model effects. The longitudinal character of the model allows for tree height imputation for the current status of forests but also for future tree height prediction.
文摘Patients with advanced esophageal cancer(T3-4, N) have a poor prognosis. Chemoradiation or chemotherapy before esophagectomy with adequate lymphadenectomy is the standard treatment for patients with resectable advanced esophageal carcinoma. However, only patients with major histopathologic response(regression to less than 10% of the primary tumor) after preoperative treatment will have a prognostic benefit of preoperative chemoradiation. Using current therapy regimens about 40% to 50% of the patients show major histopathological response. The remaining cohort does not benefit from this neoadjuvant approach but might benefit from earlier surgical resection. Therefore, it is an aim to develop tools for response prediction before starting the treatment and for early response assessment identifying responders. The current review discusses the different imaging techniques and the most recent studies about molecular markers for early response prediction. The results show that [^18F]-fluorodeoxyglucose-positron emission tomography(FDGPET) has a good sensitivity but the specificity is not robust enough for routine clinical use. Newer positron emission tomography detector technology, the combination of FDG-PET with computed tomography, additional evaluation criteria and standardization of evaluation may improve the predictive value. There exist a great number of retrospective studies using molecular markers for prediction of response. Until now the clinical use is missing. But the results of first prospective studies are promising. A future perspective may be the combination of imaging technics and special molecular markers for individualized therapy. Another aspect is the response assessment after finishing neoadjuvant treatment protocol. The different clinical methods are discussed. The results show that until now no non-invasive method is valid enough to assess complete histopathological response.
文摘Using political ecology as its conceptual framework,this paper focuses on the changes in forest utilisation and management of South Kyrgyzstan’s walnut-fruit forests over the last century. The aim of this study on human-environment interactions is to investigate the relationship between actors on the one side,their interests and demands,and the forests and forested lands on the other. Forest resource utilisation and management — and even the recognition of different forest products as resources — are connected with political and socio-economic conditions that change with time. The walnut-fruit forests of South Kyrgyzstan are unique,characterised by high biodiversity and a multiplicity of usable products;and they have been utilised for a long time. Centralised and formal management of the forests started with the Russian occupation and was strengthened under Soviet rule,when the region became a part of the USSR. During this era,a state forest administration that was structured from Moscow all the way down to the local level drew up detailed plans and developed procedures for utilising the different forest products. Since the collapse of the Soviet Union,the socio-political and economic frame conditions have changed significantly,which has brought not only the sweeping changes in the managing institutions,but also the access rights and interests in the forest resources. At present,the region is suffering from a high unemployment rate,which has resulted in the forests’ gaining considerable importance in the livelihood strategies of the local population. Political and economic liberalization,increased communication and trans-regional exchange relations have opened the door for international companies and agents interested in the valuable forest products. Today,walnut wood and burls,walnuts,wild apples and mushrooms are all exported to various countries in the world. Scientists and members of various international organisations stress the ecological value of the forests and are trying to establish nature conservation areas. Nevertheless,it is to fear that a multiplicity of interrelated factors — the present transformation and globalization processes,the appearance of new actors,the local population’s insecure economic situation and the erosion of managing institutions — are all leading to an intensified and unregulated exploitation of the forests,resulting in their degradation.
基金funded by the German Federal Ministry of Fducation and Research under research grant 033L029H and is part of the interdisciplinary research project"Sustainable land-use management in the North German lowlands"
文摘Background: Forest management decisions are based on expectations of future developments. For sound decisions it is essential to accurately predict the expected values in future developments and to account for their inherent uncertainty,for example the impact of climate change on forests. Changing climatic conditions affect forest productivity and alter the risk profile of forests and forest enterprises. Intensifying drought stress is seen as one major risk factor threatening forest management in the north German lowlands. Drought stress reduces tree growth and vitality and might even trigger mortality. But so far, it is not possible to quantify effects of a persistent dryer climate on forest productivity at a level suitable for forest management.Methods: We apply a well-established single-tree forest growth simulator to quantify the effect of persistent dryer climates on future forest productivity. We analyse the growth of Scots pine(Pinus sylvestris L.), European beech(Fagus sylvatico L.) and oak(Quercus robur L. and Quercus petraea(Matt.) Liebl.) in two forest regions in the north German lowlands for a time interval of 60 years until 2070. The growth response under three different climate projections is compared to a baseline scenario.Results: The results show clear differences in volume increment to persistent dryer climates between tree species. The findings exhibit regional differences and temporal trends. While mean annual increment at biological rotation age of Scots pine and oak predominantly benefits from the projected climate conditions until 2070, beech might suffer losses of up to 3 m^3·ha^(-1)yr^(-1) depending on climate scenario and region. However, in the projection period2051 to 2070 the uncertainty ranges comprise positive as well as negative climatic effects for all species.Conclusions: The projected changes in forest growth serve as quantitative contributions to provide decision support in the evaluation of, for example, species future site suitability and timber supply assessments. The analysis of productivity changes under persistent dryer climate complements the drought vulnerability assessment which is applied in practical forestry in northwestern Germany today. The projected species' productivity has strong implications for forest management and the inherent uncertainty needs to be accounted for.
基金supported by the Norwegian Institute of Bioeconomy Research(NIBIO)
文摘Background: Generalized height-diameter curves based on a re-parameterized version of the Korf function for Norway spruce (Piceo abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) in Norwa are presented. The Norwegian National Forest Inventory (NFI) is used as data base for estimating the model parameters. The derived models are developed to enable spatially explicit and site sensitive tree height imputatio in forest inventories as well as future tree height predictions in growth and yield scenario simulations. Methods: Generalized additive mixed models (gamm) are employed to detect and quantify potentially non-linear effects of predictor variables. In doing so the quadratic mean diameter serves as longitudinal covariate since stand ag as measured in the NFI, shows only a weak correlation with a stands developmental status in Norwegian forests. Additionally the models can be locally calibrated by predicting random effects if measured height-diameter pairs are available. Based on the model selection of non-constraint models, shape constraint additive models (scare) were fit tc incorporate expert knowledge and intrinsic relationships by enforcing certain effect patterns like monotonicity. Results: Model comparisons demonstrate that the shape constraints lead to only marginal differences in statistical characteristics but ensure reasonable model predictions. Under constant constraints the developed models predict increasing tree heights with decreasing altitude, increasing soil depth and increasing competition pressure of a tree. / two-dimensional spatially structured effect of UTM-coordinates accounts for the potential effects of large scale spatial correlated covariates, which were not at our disposal. The main result of modelling the spatially structured effect is lower tree height prediction for coastal sites and with increasing latitude. The quadratic mean diameter affects both the level and the slope of the height-diameter curve and both effects are positive. Conclusions: In this investigation it is assumed that model effects in additive modelling of height-diameter curves which are unfeasible and too wiggly from an expert point of view are a result of quantitatively or qualitatively limited data bases. However, this problem can be regarded not to be specific to our investigation but more general since growth and yield data that are balanced over the whole data range with respect to all combinations of predictor variables are exceptional cases. Hence, scare may provide methodological improvements in several applications by combining the flexibility of additive models with expert knowledge.
基金part of DSS-RiskMan(FKZ:28WB401501)a project funded by the "Waldklimafonds"+1 种基金supported by the Federal Ministry of Food and Agriculturethe Federal Ministry of the Environment,Nature Conservation and Nuclear Safety
文摘Background: Winter moth(Operophtera brumata) and mottled umber moth(Erannis defoliaria) are forest Lepidoptera species characterized by periodic high abundance in a 7–11 year cycle. During outbreak years they cause severe defoliation in many forest stands in Europe. In order to better understand the spatio-temporal dynamics and elucidate possible influences of weather, stand and site conditions, a generalized additive mixed model was developed. The investigated data base was derived from glue band catch monitoring stands of both species in Central and North Germany. From the glue bands only female moth individuals are counted and a hazard code is calculated. The model can be employed to predict the exceedance of a warning threshold of this hazard code which indicates a potential severe defoliation of oak stands by winter moth and mottled umber in the coming spring.Results: The developed model accounts for specific temporal structured effects for three large ecoregions and random effects at stand level. During variable selection the negative model effect of pest control and the positive model effects of mean daily minimum temperature in adult stage and precipitation in early pupal stage were identified.Conclusion: The developed model can be used for short-term predictions of potential defoliation risk in Central and North Germany. These predictions are sensitive to weather conditions and the population dynamics. However, a future extension of the data base comprising further outbreak years would allow for deeper investigation of the temporal and regional patterns of the cyclic dynamics and their causal influences on abundance of winter moth and mottled umber.
文摘Background: In this paper, a regression model for predicting the spatial distribution of forest cockchafer larvae in the Hessian Ried region (Germany) is presented. The forest cockchafer, a native biotic pest, is a major cause of damage in forests in this region particularly during the regeneration phase. The model developed in this study is based on a systematic sample inventory of forest cockchafer larvae by excavation across the Hessian Ried. These forest cockchafer larvae data were characterized by excess zeros and overdispersion. Methods: Using specific generalized additive regression models, different discrete distributions, including the Poisson, negative binomial and zero-inflated Poisson distributions, were compared. The methodology employed allowed the simultaneous estimation of non-linear model effects of causal covariates and, to account for spatial autocorrelation, of a 2-dimensional spatial trend function. In the validation of the models, both the Akaike information criterion (AIC) and more detailed graphical procedures based on randomized quantile residuals were used. Results: The negative binomial distribution was superior to the Poisson and the zero-inflated Poisson distributions, providing a near perfect fit to the data, which was proven in an extensive validation process. The causal predictors found to affect the density of larvae significantly were distance to water table and percentage of pure clay layer in the soil to a depth of I m. Model predictions showed that larva density increased with an increase in distance to the water table up to almost 4 m, after which it remained constant, and with a reduction in the percentage of pure clay layer. However this latter correlation was weak and requires further investigation. The 2-dimensional trend function indicated a strong spatial effect, and thus explained by far the highest proportion of variation in larva density. Conclusions: As such the model can be used to support forest practitioners in their decision making for regeneration and forest protection planning in the Hessian predicting future spatial patterns of the larva density is still comparatively weak. Ried. However, the application of the model for somewhat limited because the causal effects are
基金funded by the German Federal Ministry of Education and Research under research grant 033L029H
文摘Background: Forest management faces a climate induced shift in growth potential and increasing current and emerging new risks. Vulnerability analysis provides decision support based on projections of natural resources taking risks and uncertainties into account. In this paper we(1) characterize differences in forest dynamics under three management scenarios,(2) analyse the effects of the three scenarios on two risk factors, windthrow and drought stress, and(3) quantify the effects and the amount of uncertainty arising from climate projections on height increment and drought stress.Methods: In four regions in northern Germany, we apply three contrasting management scenarios and project forest development under climate change until 2070. Three climate runs(minimum, median, maximum) based on the emission scenario RCP 8.5 control the site-sensitive forest growth functions. The minimum and maximum climate run define the range of prospective climate development.Results: The projections of different management regimes until 2070 show the diverging medium-term effects of thinnings and harvests and long-term effects of species conversion on a regional scale. Examples of windthrow vulnerability and drought stress reveal how adaptation measures depend on the applied management path and the decision-maker’s risk attitude. Uncertainty analysis shows the increasing variability of drought risk projections with time. The effect of climate projections on height growth are quantified and uncertainty analysis reveals that height growth of young trees is dominated by the age-trend whereas the climate signal in height increment of older trees is decisive.Conclusions: Drought risk is a serious issue in the eastern regions independent of the applied silvicultural scenario,but adaptation measures are limited as the proportion of the most drought tolerant species Scots pine is already high. Windthrow risk is no serious overall threat in any region, but adequate counter-measures such as species conversion, species mixture or reduction of target diameter can be taken. This simulation study of three silvicultural scenarios and three climate runs spans a decision space of potential forest development to be used for decision making. Which adaptation measures to counteract climate induced risks and uncertainty are to be taken is,however, a matter of individual risk attitude.