The transcriptional factor GATA-6 gene produces two translational isoforms from a single mRNA through ribosomal leaky scanning. L-type GATA-6 has an extension of 146 amino acid residues at its amino terminus. In the e...The transcriptional factor GATA-6 gene produces two translational isoforms from a single mRNA through ribosomal leaky scanning. L-type GATA-6 has an extension of 146 amino acid residues at its amino terminus. In the extension, there is a unique PEST sequence (Glu31-Cys46), which is composed of an amino terminal Pro-rich segment and a carboxyl terminal Ser-cluster. Substitution of either half of the PEST sequence with Ala residues by cassette mutagenesis reduced the apparent molecular size of L-type GATA-6 on SDS-polyacrylamide gel-electrophoresis. However, the effect of substitution of the Pro-rich segment was much more significant;the mobility increase of the Pro-rich segment on the gel was 13% while that of the Ser-cluster was 8%. Substitution of each amino acid residue demonstrated that the effect of Pro substitution is greater than that of the Ser and Thr residues. Such increased mobility of L-type GATA-6 in the presence of a detergent may apparently correlate with the decrease in transcription activity in vivo as determined by means of luciferase reporter gene assay. The activity of ΔAla (with Ala residues instead of the PEST sequence) was reduced to one fifth of that of ΔA (with the PEST sequence). These results suggest that the PEST sequence of L-type GATA-6 does not function as a constitutive protein degradation signal, but rather plays structural and functional roles in the activation of gene expression on the GATA responsive promoter.展开更多
Transporter associated with antigen processing (TAP)-like (TAPL;ABCB9) is a half-type ABC transporter with sequence similarity to TAP1 and TAP2 that function in the ER membrane. To determine the cellular localization,...Transporter associated with antigen processing (TAP)-like (TAPL;ABCB9) is a half-type ABC transporter with sequence similarity to TAP1 and TAP2 that function in the ER membrane. To determine the cellular localization, TAPL and truncated forms of it were tagged with GFP at their car-boxyl termini. Intracellular localization of these fusion proteins was compared between transient and stable expression in CHO-K1 cells. When they were expressed transiently, the fluorescence of the fusion proteins was detected on the intracellular membrane, mainly in the ER, and all the fusion proteins, i.e., TAPL(M1 -A766)-GFP, TAPL(M1-S275)-GFP, TAPL(M1-K182 )-GFP, TAPL(M 1-R141)-GFP and TAPL(M1-G75), were co-localized with an ER marker, PDI. However, the fluorescence of all of them except for TAPL(M1-G 75)-GFP and TAPL(M1-S275)-GFP overlapped with a lysosome marker, cathepsin D, upon stable expression. Lysosomal localization was similarly observed with TAPL(M1- A766)-DsRed, which was stably expressed. These results suggest that TAPL is sorted to the lysosomal membrane when expressed stably in CHO-K1 cells. Furthermore, the lysosomal targeting signal may comprise the N-terminal four transmembrane helices since the N-terminal two transmembrane helices may not be enough to function as such a signal.展开更多
文摘The transcriptional factor GATA-6 gene produces two translational isoforms from a single mRNA through ribosomal leaky scanning. L-type GATA-6 has an extension of 146 amino acid residues at its amino terminus. In the extension, there is a unique PEST sequence (Glu31-Cys46), which is composed of an amino terminal Pro-rich segment and a carboxyl terminal Ser-cluster. Substitution of either half of the PEST sequence with Ala residues by cassette mutagenesis reduced the apparent molecular size of L-type GATA-6 on SDS-polyacrylamide gel-electrophoresis. However, the effect of substitution of the Pro-rich segment was much more significant;the mobility increase of the Pro-rich segment on the gel was 13% while that of the Ser-cluster was 8%. Substitution of each amino acid residue demonstrated that the effect of Pro substitution is greater than that of the Ser and Thr residues. Such increased mobility of L-type GATA-6 in the presence of a detergent may apparently correlate with the decrease in transcription activity in vivo as determined by means of luciferase reporter gene assay. The activity of ΔAla (with Ala residues instead of the PEST sequence) was reduced to one fifth of that of ΔA (with the PEST sequence). These results suggest that the PEST sequence of L-type GATA-6 does not function as a constitutive protein degradation signal, but rather plays structural and functional roles in the activation of gene expression on the GATA responsive promoter.
文摘Transporter associated with antigen processing (TAP)-like (TAPL;ABCB9) is a half-type ABC transporter with sequence similarity to TAP1 and TAP2 that function in the ER membrane. To determine the cellular localization, TAPL and truncated forms of it were tagged with GFP at their car-boxyl termini. Intracellular localization of these fusion proteins was compared between transient and stable expression in CHO-K1 cells. When they were expressed transiently, the fluorescence of the fusion proteins was detected on the intracellular membrane, mainly in the ER, and all the fusion proteins, i.e., TAPL(M1 -A766)-GFP, TAPL(M1-S275)-GFP, TAPL(M1-K182 )-GFP, TAPL(M 1-R141)-GFP and TAPL(M1-G75), were co-localized with an ER marker, PDI. However, the fluorescence of all of them except for TAPL(M1-G 75)-GFP and TAPL(M1-S275)-GFP overlapped with a lysosome marker, cathepsin D, upon stable expression. Lysosomal localization was similarly observed with TAPL(M1- A766)-DsRed, which was stably expressed. These results suggest that TAPL is sorted to the lysosomal membrane when expressed stably in CHO-K1 cells. Furthermore, the lysosomal targeting signal may comprise the N-terminal four transmembrane helices since the N-terminal two transmembrane helices may not be enough to function as such a signal.