The alkaline volcanism of the Cameroon Volcanic Line in its northern domain has raised many fresh enclaves of peridotites. The samples selected come from five (05) different localities (Liri, in the plateau of Kapsiki...The alkaline volcanism of the Cameroon Volcanic Line in its northern domain has raised many fresh enclaves of peridotites. The samples selected come from five (05) different localities (Liri, in the plateau of Kapsiki, Mazélé in the NE of Ngaoundéré, Tello and Ganguiré in the SE of Ngaoundéré and Likok, locality located in the west of Ngaoundé). The peridotite enclaves of the above localities show restricted mineralogical variation. Most are four-phase spinel-lherzolites, indicating that this is the main lithology that forms the lithospheric mantle below the shallow zone. No traces of garnet or primary plagioclase were detected, which strongly limits the depth range from which the rock fragments were sampled. The textures and the wide equilibrium temperatures (884˚C - 1115˚C) indicate also entrainment of lherzolite xenoliths from shallow depths within the lithosphere and the presence of mantle diapirism. The exchange reactions and equilibrium state established in this work make it possible to characterize the chemical composition of the upper mantle of each region and test the equilibrium state of the phases between them. Variations of major oxides and incompatible elemental concentrations in clinopyroxene indicate a primary control by partial melting. The absence of typical “metasomatic” minerals, low equilibration temperatures and enriched LREE patterns indicate that the upper mantle below septentrional crust of Cameroun underwent an event of cryptic metasomatic enrichment prior to partial melting. The distinctive chemical features, LREE enrichment, strong U, Ce and Pr, depletion relative to Ba, Nb, La, Pb, and T, fractionation of Zr and Hf and therefore ligh high Zr/Hf ratio, low La/Yb, Nb/La and Ti/Eu are all results of interaction of refractory peridotite residues with carbonatite melts.展开更多
The aim of this study of the spatial dispersion of tin, niobium and tantalum mineralization associated with the Mayo Darlé granitoids was to produce prospecting guides through predictive maps of Sn, Nb and Ta in ...The aim of this study of the spatial dispersion of tin, niobium and tantalum mineralization associated with the Mayo Darlé granitoids was to produce prospecting guides through predictive maps of Sn, Nb and Ta in the region. It was based on a database (in appendix) obtained after analysis of rock samples (greisens and quartz veins) collected in the field, using a portable X-ray fluorescence (XRF) spectrometer. Two approaches were used: 1) structural studies in the field using the directions of veins and fractures 2) the use of variographic maps, an essential element in geostatistics for determining directional anisotropies. A joint synthesis of the modelling results shows that tin, tantalum and niobium mineralization at Mayo Darlé is concentrated along strike intervals N315E to N320E, with mineralization also occurring along strike N35E for high-grade Sn, medium-grade Ta and low-grade Nb. In short, mineral concentrations disperse progressively in space: positively from east to west for tantalum and niobium, and inversely for tin.展开更多
文摘The alkaline volcanism of the Cameroon Volcanic Line in its northern domain has raised many fresh enclaves of peridotites. The samples selected come from five (05) different localities (Liri, in the plateau of Kapsiki, Mazélé in the NE of Ngaoundéré, Tello and Ganguiré in the SE of Ngaoundéré and Likok, locality located in the west of Ngaoundé). The peridotite enclaves of the above localities show restricted mineralogical variation. Most are four-phase spinel-lherzolites, indicating that this is the main lithology that forms the lithospheric mantle below the shallow zone. No traces of garnet or primary plagioclase were detected, which strongly limits the depth range from which the rock fragments were sampled. The textures and the wide equilibrium temperatures (884˚C - 1115˚C) indicate also entrainment of lherzolite xenoliths from shallow depths within the lithosphere and the presence of mantle diapirism. The exchange reactions and equilibrium state established in this work make it possible to characterize the chemical composition of the upper mantle of each region and test the equilibrium state of the phases between them. Variations of major oxides and incompatible elemental concentrations in clinopyroxene indicate a primary control by partial melting. The absence of typical “metasomatic” minerals, low equilibration temperatures and enriched LREE patterns indicate that the upper mantle below septentrional crust of Cameroun underwent an event of cryptic metasomatic enrichment prior to partial melting. The distinctive chemical features, LREE enrichment, strong U, Ce and Pr, depletion relative to Ba, Nb, La, Pb, and T, fractionation of Zr and Hf and therefore ligh high Zr/Hf ratio, low La/Yb, Nb/La and Ti/Eu are all results of interaction of refractory peridotite residues with carbonatite melts.
文摘The aim of this study of the spatial dispersion of tin, niobium and tantalum mineralization associated with the Mayo Darlé granitoids was to produce prospecting guides through predictive maps of Sn, Nb and Ta in the region. It was based on a database (in appendix) obtained after analysis of rock samples (greisens and quartz veins) collected in the field, using a portable X-ray fluorescence (XRF) spectrometer. Two approaches were used: 1) structural studies in the field using the directions of veins and fractures 2) the use of variographic maps, an essential element in geostatistics for determining directional anisotropies. A joint synthesis of the modelling results shows that tin, tantalum and niobium mineralization at Mayo Darlé is concentrated along strike intervals N315E to N320E, with mineralization also occurring along strike N35E for high-grade Sn, medium-grade Ta and low-grade Nb. In short, mineral concentrations disperse progressively in space: positively from east to west for tantalum and niobium, and inversely for tin.