期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Designing Advanced Aqueous Zinc-Ion Batteries:Principles,Strategies,and Perspectives 被引量:10
1
作者 Yan Li Zhouhao Wang +5 位作者 Yi Cai mei er pam Yingkui Yang Daohong Zhang Ye Wang Shaozhuan Huang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第3期823-851,共29页
Aqueous zinc-ion batteries(AZIBs)are an appealing battery system due to their low cost,intrinsic safety,and environmental-friendliness,while their application is plagued by the obstacles from the cathode,electrolyte,a... Aqueous zinc-ion batteries(AZIBs)are an appealing battery system due to their low cost,intrinsic safety,and environmental-friendliness,while their application is plagued by the obstacles from the cathode,electrolyte,and zinc anode.Summarizing the design principles and strategies toward the optimization of cathode,electrolyte,and zinc anode is crucial for the development of AZIBs.Herein,we present a comprehensive analysis of the design principles and promising strategies toward the improvement of AZIBs.Firstly,the various reaction mechanisms are summarized and the existing issues associated with the cathode,electrolyte,and zinc anode are discussed to guide the rational design of AZIBs.Subsequently,we provide an in-depth and comprehensive discussion on the design principles and strategies for the electrodes/electrolyte/separator optimization,and analyze the advantages and disadvantages of various strategies.Importantly,the design principles and strategies of the newly appeared conversion-type AZIBs,such as Zn-S battery and Zn-Se battery,are also discussed and analyzed.The effect of design strategies on the electrochemical performance and the relationship between the current issues and strategies are also unveiled in detail.Finally,some research trends and perspectives are provided for designing better AZIBs. 展开更多
关键词 aqueous zinc-ion batteries cathode modification design principles electrolyte regulation zinc anode optimization
下载PDF
Boosting Sodium Storage of Fe1?xS/MoS2 Composite via Heterointerface Engineering 被引量:2
2
作者 Song Chen Shaozhuan Huang +8 位作者 Junping Hu Shuang Fan Yang Shang mei er pam Xiaoxia Li Ye Wang Tingting Xu Yumeng Shi Hui Ying Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期425-438,共14页
Improving the cycling stability of metal sulfide-based anode materials at high rate is of great significance for advanced sodium ion batteries.However,the sluggish reaction kinetics is a big obstacle for the developme... Improving the cycling stability of metal sulfide-based anode materials at high rate is of great significance for advanced sodium ion batteries.However,the sluggish reaction kinetics is a big obstacle for the development of high-performance sodium storage electrodes.Herein,we have rationally engineered the heterointerface by designing the Fe1?xS/MoS2 heterostructure with abundant“ion reservoir”to endow the electrode with excellent cycling stability and rate capability,which is proved by a series of in and ex situ electrochemical investigations.Density functional theory calculations further reveal that the heterointerface greatly decreases sodium ion diffusion barrier and facilitates charge-transfer kinetics.Our present findings not only provide a deep analysis on the correlation between the structure and performance,but also draw inspiration for rational heterointerface engineering toward the next-generation high-performance energy storage devices. 展开更多
关键词 HETEROSTRUCTURE HETEROINTERFACE Diffusion barrier ION reservoir SODIUM ION battery
下载PDF
Bismuth Oxide Selenium/Graphene Oxide Composites:Toward High-Performance Electrodes for Aqueous Alkaline Battery
3
作者 Yi-Lin Liu Meng-Qiu Li +6 位作者 Gui-Gen Wang Le-Yang Dang Fei Li mei er pam Hua-Yu Zhang Jie-Cai Han Hui Ying Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第3期465-473,共9页
Aqueous alkaline battery represents a promising energy storage technology with both high energy density and high power density as rechargeable batteries.However,the low theoretical capacities,kinetics and stability of... Aqueous alkaline battery represents a promising energy storage technology with both high energy density and high power density as rechargeable batteries.However,the low theoretical capacities,kinetics and stability of anode materials have limited their developments and commercializations.In this study,we propose a novel method to produce two-dimensional layered bismuth oxide selenium(Bi_(2)O_(2)Se)and reduced graphene oxide(r GO)composites via a one-step hydrothermal method.The volume change caused by phase change during rapid charging and discharging is significantly reduced and the capacity reaches 263.83 m Ah g^(-1)at a current density of 0.5 A g^(-1).The Bi_(2)O_(2)Se/r GO electrode exhibits excellent cycling stability in which the capacity retention rate is 81.04%after 5000 cycles.More importantly,the Bi_(2)O_(2)Se/r GO nanosheet composite is used as the anode electrode material with MnCo_(2)O_(4.5)@Ni(OH)_(2)as the cathode electrode material in aqueous alkaline battery.When the energy density is 76.16 W h kg^(-1),the power density reaches 308.65 W kg^(-1).At a power density of 10.21 k W kg^(-1),the energy density remains as high as 33.86 W h kg^(-1).The results presented here may advance the understanding of the issues facing the development of aqueous battery anode materials. 展开更多
关键词 anode materials aqueous alkaline battery Bi_(2)O_(2)Se NANOSHEET reduced graphene oxide
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部