Aqueous zinc-ion batteries(AZIBs)are an appealing battery system due to their low cost,intrinsic safety,and environmental-friendliness,while their application is plagued by the obstacles from the cathode,electrolyte,a...Aqueous zinc-ion batteries(AZIBs)are an appealing battery system due to their low cost,intrinsic safety,and environmental-friendliness,while their application is plagued by the obstacles from the cathode,electrolyte,and zinc anode.Summarizing the design principles and strategies toward the optimization of cathode,electrolyte,and zinc anode is crucial for the development of AZIBs.Herein,we present a comprehensive analysis of the design principles and promising strategies toward the improvement of AZIBs.Firstly,the various reaction mechanisms are summarized and the existing issues associated with the cathode,electrolyte,and zinc anode are discussed to guide the rational design of AZIBs.Subsequently,we provide an in-depth and comprehensive discussion on the design principles and strategies for the electrodes/electrolyte/separator optimization,and analyze the advantages and disadvantages of various strategies.Importantly,the design principles and strategies of the newly appeared conversion-type AZIBs,such as Zn-S battery and Zn-Se battery,are also discussed and analyzed.The effect of design strategies on the electrochemical performance and the relationship between the current issues and strategies are also unveiled in detail.Finally,some research trends and perspectives are provided for designing better AZIBs.展开更多
Improving the cycling stability of metal sulfide-based anode materials at high rate is of great significance for advanced sodium ion batteries.However,the sluggish reaction kinetics is a big obstacle for the developme...Improving the cycling stability of metal sulfide-based anode materials at high rate is of great significance for advanced sodium ion batteries.However,the sluggish reaction kinetics is a big obstacle for the development of high-performance sodium storage electrodes.Herein,we have rationally engineered the heterointerface by designing the Fe1?xS/MoS2 heterostructure with abundant“ion reservoir”to endow the electrode with excellent cycling stability and rate capability,which is proved by a series of in and ex situ electrochemical investigations.Density functional theory calculations further reveal that the heterointerface greatly decreases sodium ion diffusion barrier and facilitates charge-transfer kinetics.Our present findings not only provide a deep analysis on the correlation between the structure and performance,but also draw inspiration for rational heterointerface engineering toward the next-generation high-performance energy storage devices.展开更多
Aqueous alkaline battery represents a promising energy storage technology with both high energy density and high power density as rechargeable batteries.However,the low theoretical capacities,kinetics and stability of...Aqueous alkaline battery represents a promising energy storage technology with both high energy density and high power density as rechargeable batteries.However,the low theoretical capacities,kinetics and stability of anode materials have limited their developments and commercializations.In this study,we propose a novel method to produce two-dimensional layered bismuth oxide selenium(Bi_(2)O_(2)Se)and reduced graphene oxide(r GO)composites via a one-step hydrothermal method.The volume change caused by phase change during rapid charging and discharging is significantly reduced and the capacity reaches 263.83 m Ah g^(-1)at a current density of 0.5 A g^(-1).The Bi_(2)O_(2)Se/r GO electrode exhibits excellent cycling stability in which the capacity retention rate is 81.04%after 5000 cycles.More importantly,the Bi_(2)O_(2)Se/r GO nanosheet composite is used as the anode electrode material with MnCo_(2)O_(4.5)@Ni(OH)_(2)as the cathode electrode material in aqueous alkaline battery.When the energy density is 76.16 W h kg^(-1),the power density reaches 308.65 W kg^(-1).At a power density of 10.21 k W kg^(-1),the energy density remains as high as 33.86 W h kg^(-1).The results presented here may advance the understanding of the issues facing the development of aqueous battery anode materials.展开更多
基金supported by the research funds from South-Central University for Nationalities(Grant No.YZZ19001)financial support from the National Natural Science Foundation of China(51873233)the Hubei Provincial Natural Science Foundation(2018CFA023)。
文摘Aqueous zinc-ion batteries(AZIBs)are an appealing battery system due to their low cost,intrinsic safety,and environmental-friendliness,while their application is plagued by the obstacles from the cathode,electrolyte,and zinc anode.Summarizing the design principles and strategies toward the optimization of cathode,electrolyte,and zinc anode is crucial for the development of AZIBs.Herein,we present a comprehensive analysis of the design principles and promising strategies toward the improvement of AZIBs.Firstly,the various reaction mechanisms are summarized and the existing issues associated with the cathode,electrolyte,and zinc anode are discussed to guide the rational design of AZIBs.Subsequently,we provide an in-depth and comprehensive discussion on the design principles and strategies for the electrodes/electrolyte/separator optimization,and analyze the advantages and disadvantages of various strategies.Importantly,the design principles and strategies of the newly appeared conversion-type AZIBs,such as Zn-S battery and Zn-Se battery,are also discussed and analyzed.The effect of design strategies on the electrochemical performance and the relationship between the current issues and strategies are also unveiled in detail.Finally,some research trends and perspectives are provided for designing better AZIBs.
基金the support from the Thousand Young Talents Program of Chinathe National Natural Science Foundation of China(Nos.51602200,61874074,21603192)+3 种基金Science and Technology Project of Shenzhen(JCYJ20170817101100705,JCYJ20170817100111548,ZDSYS201707271014468)the(Key)Project of Department of Education of Guangdong Province(No.2016KZDXM008)supported by Shenzhen Peacock Plan(No.KQTD2016053112042971)Singapore Ministry of Education Academic Research Fund Tier 2(MOE2018-T2-2-178).
文摘Improving the cycling stability of metal sulfide-based anode materials at high rate is of great significance for advanced sodium ion batteries.However,the sluggish reaction kinetics is a big obstacle for the development of high-performance sodium storage electrodes.Herein,we have rationally engineered the heterointerface by designing the Fe1?xS/MoS2 heterostructure with abundant“ion reservoir”to endow the electrode with excellent cycling stability and rate capability,which is proved by a series of in and ex situ electrochemical investigations.Density functional theory calculations further reveal that the heterointerface greatly decreases sodium ion diffusion barrier and facilitates charge-transfer kinetics.Our present findings not only provide a deep analysis on the correlation between the structure and performance,but also draw inspiration for rational heterointerface engineering toward the next-generation high-performance energy storage devices.
基金supported by Fund of National Key Laboratory of Science and Technology on Advanced Composites in Special Environments(Grant No.6142905192507)Shenzhen Science and Technology Plan Supported Project(Grant No.JCYJ20170413105844696)+1 种基金China Scholarship Council(Grant No.201606125092)Singapore Ministry of Education Academic Research Fund Tier 2(MOE2018-T2-2-178)
文摘Aqueous alkaline battery represents a promising energy storage technology with both high energy density and high power density as rechargeable batteries.However,the low theoretical capacities,kinetics and stability of anode materials have limited their developments and commercializations.In this study,we propose a novel method to produce two-dimensional layered bismuth oxide selenium(Bi_(2)O_(2)Se)and reduced graphene oxide(r GO)composites via a one-step hydrothermal method.The volume change caused by phase change during rapid charging and discharging is significantly reduced and the capacity reaches 263.83 m Ah g^(-1)at a current density of 0.5 A g^(-1).The Bi_(2)O_(2)Se/r GO electrode exhibits excellent cycling stability in which the capacity retention rate is 81.04%after 5000 cycles.More importantly,the Bi_(2)O_(2)Se/r GO nanosheet composite is used as the anode electrode material with MnCo_(2)O_(4.5)@Ni(OH)_(2)as the cathode electrode material in aqueous alkaline battery.When the energy density is 76.16 W h kg^(-1),the power density reaches 308.65 W kg^(-1).At a power density of 10.21 k W kg^(-1),the energy density remains as high as 33.86 W h kg^(-1).The results presented here may advance the understanding of the issues facing the development of aqueous battery anode materials.