The coastal areas of the lower reaches of Oujiang River Basin are rich in groundwater resources.However,the unsustainable exploitation and utilization of groundwater have led to significant changes in the groundwater ...The coastal areas of the lower reaches of Oujiang River Basin are rich in groundwater resources.However,the unsustainable exploitation and utilization of groundwater have led to significant changes in the groundwater environment.Understanding the characteristics and genesis of groundwater salinization is crucial for preventing its deterioration and ensuring sustainable utilization.In this study,a comprehensive approach combining the ion ratio method,mineral saturation index method and multivariate statistical analysis was employed to investigate the hydrochemical characteristics and main controlling factors in the study area.The findings reveal that:(1)Groundwater samples in study area exhibit a neutral to slightly alkaline pH.The predominant chemical types of unconfined water are HCO_(3)-Ca·Na,HCO_(3)·Cl-Na·Ca and HCO_(3)·SO_(4)-Ca·Na,while confined water mainly exhibits Cl·HCO_(3)-Na and Cl-Na types.(2)Salinity coefficients indicate an increase in salinity from unconfined to confined water.TDS,Na^(+)and Cl^(–)concentrations show an increasing trend from mountainous to coastal areas in unconfined water,while confined water displays variability in TDS,Na^(+)and Cl^(–)concentrations.(3)Groundwater salinity is mainly influenced by water-rock interactions,including the dissolution of halite and gypsum,cation exchange,and seawater intrusion etc.Additionally,human activities and carbonate dissolution contribute to salinity in unconfined water.Seawater intrusion is identified as the primary factor leading to higher salinity in confined water compared to unconfined water,with increasing cation exchange and seawater interaction observed from unconfined to confined water.展开更多
Identifying semantic types for attributes in relations,known as attribute semantic type(AST)identification,plays an important role in many data analysis tasks,such as data cleaning,schema matching,and keyword search i...Identifying semantic types for attributes in relations,known as attribute semantic type(AST)identification,plays an important role in many data analysis tasks,such as data cleaning,schema matching,and keyword search in databases.However,due to a lack of unified naming standards across prevalent information systems(a.k.a.information islands),AST identification still remains as an open problem.To tackle this problem,we propose a context-aware method to figure out the ASTs for relations in this paper.We transform the AST identification into a multi-class classification problem and propose a schema context aware(SCA)model to learn the representation from a collection of relations associated with attribute values and schema context.Based on the learned representation,we predict the AST for a given attribute from an underlying relation,wherein the predicted AST is mapped to one of the labeled ASTs.To improve the performance for AST identification,especially for the case that the predicted semantic types of attributes are not included in the labeled ASTs,we then introduce knowledge base embeddings(a.k.a.KBVec)to enhance the above representation and construct a schema context aware model with knowledge base enhanced(SCA-KB)to get a stable and robust model.Extensive experiments based on real datasets demonstrate that our context-aware method outperforms the state-of-the-art approaches by a large margin,up to 6.14%and 25.17%in terms of macro average F1 score,and up to 0.28%and 9.56%in terms of weighted F1 score over high-quality and low-quality datasets respectively.展开更多
基金supported by investigation project of China Geological Survey(DD20230507).
文摘The coastal areas of the lower reaches of Oujiang River Basin are rich in groundwater resources.However,the unsustainable exploitation and utilization of groundwater have led to significant changes in the groundwater environment.Understanding the characteristics and genesis of groundwater salinization is crucial for preventing its deterioration and ensuring sustainable utilization.In this study,a comprehensive approach combining the ion ratio method,mineral saturation index method and multivariate statistical analysis was employed to investigate the hydrochemical characteristics and main controlling factors in the study area.The findings reveal that:(1)Groundwater samples in study area exhibit a neutral to slightly alkaline pH.The predominant chemical types of unconfined water are HCO_(3)-Ca·Na,HCO_(3)·Cl-Na·Ca and HCO_(3)·SO_(4)-Ca·Na,while confined water mainly exhibits Cl·HCO_(3)-Na and Cl-Na types.(2)Salinity coefficients indicate an increase in salinity from unconfined to confined water.TDS,Na^(+)and Cl^(–)concentrations show an increasing trend from mountainous to coastal areas in unconfined water,while confined water displays variability in TDS,Na^(+)and Cl^(–)concentrations.(3)Groundwater salinity is mainly influenced by water-rock interactions,including the dissolution of halite and gypsum,cation exchange,and seawater intrusion etc.Additionally,human activities and carbonate dissolution contribute to salinity in unconfined water.Seawater intrusion is identified as the primary factor leading to higher salinity in confined water compared to unconfined water,with increasing cation exchange and seawater interaction observed from unconfined to confined water.
基金supported by the National Key Research and Development Program of China under Grant No.2020YFB2104100the National Natural Science Foundation of China under Grant Nos.61972403 and U1711261the Fundamental Research Funds for the Central Universities of China,the Research Funds of Renmin University of China,and Tencent Rhino-Bird Joint Research Program.
文摘Identifying semantic types for attributes in relations,known as attribute semantic type(AST)identification,plays an important role in many data analysis tasks,such as data cleaning,schema matching,and keyword search in databases.However,due to a lack of unified naming standards across prevalent information systems(a.k.a.information islands),AST identification still remains as an open problem.To tackle this problem,we propose a context-aware method to figure out the ASTs for relations in this paper.We transform the AST identification into a multi-class classification problem and propose a schema context aware(SCA)model to learn the representation from a collection of relations associated with attribute values and schema context.Based on the learned representation,we predict the AST for a given attribute from an underlying relation,wherein the predicted AST is mapped to one of the labeled ASTs.To improve the performance for AST identification,especially for the case that the predicted semantic types of attributes are not included in the labeled ASTs,we then introduce knowledge base embeddings(a.k.a.KBVec)to enhance the above representation and construct a schema context aware model with knowledge base enhanced(SCA-KB)to get a stable and robust model.Extensive experiments based on real datasets demonstrate that our context-aware method outperforms the state-of-the-art approaches by a large margin,up to 6.14%and 25.17%in terms of macro average F1 score,and up to 0.28%and 9.56%in terms of weighted F1 score over high-quality and low-quality datasets respectively.