期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Syrosingopine,an anti-hypertensive drug and lactate transporter(MCT1/4)inhibitor,activates hepatic stellate cells and exacerbates liver fibrosis in a mouse model 被引量:2
1
作者 meichun guo Yannian Gou +5 位作者 Xiangyu Dong Jiamin Zhong Aohua Li Ailing Hao Tongchuan He Jiaming Fan 《Genes & Diseases》 SCIE CSCD 2024年第4期28-30,共3页
Syrosingopine is an anti-hypertensive drug and can cause high intracellular lactate levels and end-product inhibition of lactate dehydrogenase by inhibiting the lactate transporters MCT1 and MCT4.Previous studies have... Syrosingopine is an anti-hypertensive drug and can cause high intracellular lactate levels and end-product inhibition of lactate dehydrogenase by inhibiting the lactate transporters MCT1 and MCT4.Previous studies have shown that syrosingopine plays an essential role in the process of glycolytic blockade,ATP depletion,and cell death in cancer due to high intracellular levels of lactate. 展开更多
关键词 HYPERTENSIVE MCT1 DRUG
原文传递
A simplified noncryogenic strategy to transport mesenchymal stem cells: Potential applications in cell therapy and regenerative medicine 被引量:2
2
作者 Xiangyu Dong Yannian Gou +10 位作者 meichun guo Jiamin Zhong Aohua Li Ailing Hao Wei Zeng Rex C.Haydon Hue H.Luu Russell R.Reid Tongchuan He Yan Xu Jiaming Fan 《Genes & Diseases》 SCIE CSCD 2024年第3期26-29,共4页
With the rapid advances in stem cell research and po-tential cell-based therapies,there is an urgent need to develop safe and reliable cell transport strategies.Except for autologous stem cell-based therapies,allogene... With the rapid advances in stem cell research and po-tential cell-based therapies,there is an urgent need to develop safe and reliable cell transport strategies.Except for autologous stem cell-based therapies,allogeneic stem cell therapies and ex vivo genetically engineered cell therapies would require safe,efficient,and reliable cell preservation and transport methods. 展开更多
关键词 TRANSPORT METHODS simplified
原文传递
Adipose-derived mesenchymal stem cells(MSCs)are a superior cell source for bone tissue engineering
3
作者 Yannian Gou Yanran Huang +18 位作者 Wenping Luo Yanan Li Piao Zhao Jiamin Zhong Xiangyu Dong meichun guo Aohua Li Ailing Hao guozhi Zhao Yonghui Wang Yi Zhu Hui Zhang Yunhan Shi William Wagstaff Hue H.Luu Lewis L.Shi Russell R.Reid Tong-Chuan He Jiaming Fan 《Bioactive Materials》 SCIE 2024年第4期51-63,共13页
Effective bone regeneration through tissue engineering requires a combination of osteogenic progenitors,osteoinductive biofactors and biocompatible scaffold materials.Mesenchymal stem cells(MSCs)represent the most pro... Effective bone regeneration through tissue engineering requires a combination of osteogenic progenitors,osteoinductive biofactors and biocompatible scaffold materials.Mesenchymal stem cells(MSCs)represent the most promising seed cells for bone tissue engineering.As multipotent stem cells that can self-renew and differentiate into multiple lineages including bone and fat,MSCs can be isolated from numerous tissues and exhibit varied differentiation potential.To identify an optimal progenitor cell source for bone tissue engineering,we analyzed the proliferative activity and osteogenic potential of four commonly-used mouse MSC sources,including immortalized mouse embryonic fibroblasts(iMEF),immortalized mouse bone marrow stromal stem cells(imBMSC),immortalized mouse calvarial mesenchymal progenitors(iCAL),and immortalized mouse adipose-derived mesenchymal stem cells(iMAD).We found that iMAD exhibited highest osteogenic and adipogenic capabilities upon BMP9 stimulation in vitro,whereas iMAD and iCAL exhibited highest osteogenic capability in BMP9-induced ectopic osteogenesis and critical-sized calvarial defect repair.Transcriptomic analysis revealed that,while each MSC line regulated a distinct set of target genes upon BMP9 stimulation,all MSC lines underwent osteogenic differentiation by regulating osteogenesis-related signaling including Wnt,TGF-β,PI3K/AKT,MAPK,Hippo and JAK-STAT pathways.Collectively,our results demonstrate that adipose-derived MSCs represent optimal progenitor sources for cell-based bone tissue engineering. 展开更多
关键词 Mesenchymal stem cell(MSC) Bone tissue engineering Multipotent progenitor cells Adipose-derived mesenchymal stem cells Osteogenic differentiation Adipogenesis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部