Purpose:With the availability of large-scale scholarly datasets,scientists from various domains hope to understand the underlying mechanisms behind science,forming a vibrant area of inquiry in the emerging“science of...Purpose:With the availability of large-scale scholarly datasets,scientists from various domains hope to understand the underlying mechanisms behind science,forming a vibrant area of inquiry in the emerging“science of science”field.As the results from the science of science often has strong policy implications,understanding the causal relationships between variables becomes prominent.However,the most credible quasi-experimental method among all causal inference methods,and a highly valuable tool in the empirical toolkit,Regression Discontinuity Design(RDD)has not been fully exploited in the field of science of science.In this paper,we provide a systematic survey of the RDD method,and its practical applications in the science of science.Design/methodology/approach:First,we introduce the basic assumptions,mathematical notations,and two types of RDD,i.e.,sharp and fuzzy RDD.Second,we use the Web of Science and the Microsoft Academic Graph datasets to study the evolution and citation patterns of RDD papers.Moreover,we provide a systematic survey of the applications of RDD methodologies in various scientific domains,as well as in the science of science.Finally,we demonstrate a case study to estimate the effect of Head Start Funding Proposals on child mortality.Findings:RDD was almost neglected for 30 years after it was first introduced in 1960.Afterward,scientists used mathematical and economic tools to develop the RDD methodology.After 2010,RDD methods showed strong applications in various domains,including medicine,psychology,political science and environmental science.However,we also notice that the RDD method has not been well developed in science of science research.Research Limitations:This work uses a keyword search to obtain RDD papers,which may neglect some related work.Additionally,our work does not aim to develop rigorous mathematical and technical details of RDD but rather focuses on its intuitions and applications.Practical implications:This work proposes how to use the RDD method in science of science research.Originality/value:This work systematically introduces the RDD,and calls for the awareness of using such a method in the field of science of science.展开更多
[Objectives]To explore the cutting propagation mode of citrus rootstock,improve the survival rooting rate of citrus rootstock,and provide theoretical guidance and technical reference for the rooting research of diffic...[Objectives]To explore the cutting propagation mode of citrus rootstock,improve the survival rooting rate of citrus rootstock,and provide theoretical guidance and technical reference for the rooting research of difficult-to-root plants such as citrus.[Methods]Five citrus rootstocks Citrus tangerina Tanaka‘Hongju’,Citrus haniana Hort‘Suanju’,Citrus limonia Osbeck‘Hongningmeng’,Citrus sinensis×Poncirus trifoliata‘Zhicheng’and Poncirus trifoliate(L)Raf.‘Zhike’were used as experimental materials to select the suitable cutting substrate for citrus rootstocks by measuring the physical properties of the substrate.Cutting was carried out in spring,summer,autumn and winter respectively.After cutting,the morphological changes of cuttings were observed regularly,and the callus rate,germination rate and rooting rate of cuttings were recorded.[Results]The best substrate for citrus rootstock cutting was peat soil,vermiculite and fine river sand(2:1:1).The callus of citrus rootstock in different cutting seasons began to appear in 10-22 d,and the callus rate reached 55%-100%.In terms of budding,the budding time was the earliest in summer and autumn,and slightly later in spring and winter;the germination rate of C.limonia Osbeck‘Hongningmeng’was the highest,and the germination rate of C.sinensis×P.trifoliata‘Zhicheng’and P.trifoliate(L)Raf.‘Zhike’was lower;in terms of rooting,C.limonia Osbeck‘Hongningmeng’had the earliest rooting time and the highest rooting rate and could reach 100%in all seasons;the rooting rate of C.tangerina Tanaka‘Hongju’was 50%-80%;the rooting rate of C.haniana Hort‘Suanju’was 60%-80%;C.sinensis×P.trifoliata‘Zhicheng’and P.trifoliate(L)Raf.‘Zhike’showed the earliest rooting time and the highest rooting rate in summer,and the latest rooting time and the lowest rooting rate in winter,which were only 14.5%.Therefore,different citrus rootstock varieties should choose the appropriate cutting time according to their own characteristics.[Conclusions]The results of this study can provide a scientific basis for a large number of cutting propagation of different citrus rootstocks,and have practical guiding significance for large-scale planting.展开更多
Re-routing system has become an important technology to improve traffic efficiency.The traditional re-routing schemes do not consider the dynamic characteristics of urban traffic,making the planned routes unable to co...Re-routing system has become an important technology to improve traffic efficiency.The traditional re-routing schemes do not consider the dynamic characteristics of urban traffic,making the planned routes unable to cope with the changing traf-fic conditions.Based on real-time traffic information,it is challenging to dynamically re-route connected vehicles to alleviate traffic congestion.Moreover,how to obtain global traffic information while reducing communication costs and improving travel efficiency poses a challenge to the re-routing system.To deal with these challenges,this paper proposes CHRT,a clustering-based hybrid re-routing system for traffic congestion avoidance.CHRT develops a multi-layer hybrid architecture.The central server accesses the global view of traffic,and the distributed part is composed of vehicles divided into clusters to reduce latency and communication overhead.Then,a clustering-based priority mechanism is proposed,which sets priorities for clusters based on realtime traffic information to avoid secondary congestion.Furthermore,to plan the optimal routes for vehicles while alleviating global traffic congestion,this paper presents a multi-metric re-routing algorithm.Through extensive simulations based on the SUMO traffic simulator,CHRT reduces vehicle traveling time,fuel consumption,and CO2 emissions compared to other systems.In addition,CHRT globally alleviates traffic congestion and improves traffic efficiency.展开更多
Early folliculogenesis involved in the interaction of germ cells and somatic cells is a complicated physiological event. Female germ cells are committed to differentiate into oocytes and finish complete development in...Early folliculogenesis involved in the interaction of germ cells and somatic cells is a complicated physiological event. Female germ cells are committed to differentiate into oocytes and finish complete development in the functional units of follicles. Thus there will be great significance in basal research and practices to evaluate the possibility of ovarian cells to reconstitute into follicles in vitro. In the present research, 12-16 dpc (days post coitum) mouse fetal ovarian cells were respectively isolated using collagenase digestion and cultured in droplets in vitro. The results revealed that the fetal ovarian cells of 12-16 dpc appeared to form multiple cell aggregates and tissue-like pieces in vitro. However, 12-13 dpc ovarian cells failed to form the follicles. 14-15 dpc ovarian cells were competent to form a few follicle-like complexes. Furthermore many small typical follicles were reconstituted from 16 dpc ovarian cells in vitro. The results showed for the first time that mouse embryonic展开更多
Civets are small mammals belonging to the family Viverridae.The masked palm civets(Paguma larvata)served as an intermediate host in the bat-to-human transmission of severe acute respiratory syndrome coronavirus(SARS-C...Civets are small mammals belonging to the family Viverridae.The masked palm civets(Paguma larvata)served as an intermediate host in the bat-to-human transmission of severe acute respiratory syndrome coronavirus(SARS-Co V)in 2003(Guan et al.,2003).Because of their unique role in the SARS outbreak,civets were suspected as a potential intermediate host of SARS-Co V-2.展开更多
The typical antiferroelectric(AFE)thick films Pb_(0.94)La_(0.04)(Zr_(0.98)Ti_(0.02))O_(3)(PLZT 4/98/2)with different thicknesses of 2,4,6 and 10μm were successfully deposited on Pt(111)/TiO_(2)/SiO_(2)/Si(100)substra...The typical antiferroelectric(AFE)thick films Pb_(0.94)La_(0.04)(Zr_(0.98)Ti_(0.02))O_(3)(PLZT 4/98/2)with different thicknesses of 2,4,6 and 10μm were successfully deposited on Pt(111)/TiO_(2)/SiO_(2)/Si(100)substrates from polyvinylpyrrolidone(PVP)-modified chemical solution.The effects of thickness on the crystalline structure,electrical properties and the energy-storage performance were investigated in detail.X-Ray diffraction analysis and scanning electron microscopy pictures indicated that AFE films with a thickness less than 4m showed a(111)-preferred orientation with uniform surface microstructure.The electrical measurement results illustrated that,as the thickness increased,the saturation polarization,remnant polarization,dielectric constant and leakage current of AFE thick films were enhanced gradually,while the capacitive density and the critical breakdown fields were decreased.Moreover,all the PLZT 4/98/2 AFE films shared the same Curie temperature of about 224℃.As a result,the AFE thick films showed good energy-storage stability in a wide temperature range.The maximum energy-storage density of 47.4 J/cm^(3) was obtained in the 2-μm-thick PLZT 4/98/2 films measured at 3699 kV/cm.展开更多
基金This work was supported by grants from the National Natural Science Foundation of China under Grant Nos.72004177 and L1924078.
文摘Purpose:With the availability of large-scale scholarly datasets,scientists from various domains hope to understand the underlying mechanisms behind science,forming a vibrant area of inquiry in the emerging“science of science”field.As the results from the science of science often has strong policy implications,understanding the causal relationships between variables becomes prominent.However,the most credible quasi-experimental method among all causal inference methods,and a highly valuable tool in the empirical toolkit,Regression Discontinuity Design(RDD)has not been fully exploited in the field of science of science.In this paper,we provide a systematic survey of the RDD method,and its practical applications in the science of science.Design/methodology/approach:First,we introduce the basic assumptions,mathematical notations,and two types of RDD,i.e.,sharp and fuzzy RDD.Second,we use the Web of Science and the Microsoft Academic Graph datasets to study the evolution and citation patterns of RDD papers.Moreover,we provide a systematic survey of the applications of RDD methodologies in various scientific domains,as well as in the science of science.Finally,we demonstrate a case study to estimate the effect of Head Start Funding Proposals on child mortality.Findings:RDD was almost neglected for 30 years after it was first introduced in 1960.Afterward,scientists used mathematical and economic tools to develop the RDD methodology.After 2010,RDD methods showed strong applications in various domains,including medicine,psychology,political science and environmental science.However,we also notice that the RDD method has not been well developed in science of science research.Research Limitations:This work uses a keyword search to obtain RDD papers,which may neglect some related work.Additionally,our work does not aim to develop rigorous mathematical and technical details of RDD but rather focuses on its intuitions and applications.Practical implications:This work proposes how to use the RDD method in science of science research.Originality/value:This work systematically introduces the RDD,and calls for the awareness of using such a method in the field of science of science.
基金Supported by National Modern Agricultural Industry Technology System Project of Ministry of Finance and Ministry of Agriculture and Rural Affairs(CARS-26)Guangdong Science and Technology Department Project of High-quality Development in Hundred Counties,Thousands Towns and Ten Thousand Villages.
文摘[Objectives]To explore the cutting propagation mode of citrus rootstock,improve the survival rooting rate of citrus rootstock,and provide theoretical guidance and technical reference for the rooting research of difficult-to-root plants such as citrus.[Methods]Five citrus rootstocks Citrus tangerina Tanaka‘Hongju’,Citrus haniana Hort‘Suanju’,Citrus limonia Osbeck‘Hongningmeng’,Citrus sinensis×Poncirus trifoliata‘Zhicheng’and Poncirus trifoliate(L)Raf.‘Zhike’were used as experimental materials to select the suitable cutting substrate for citrus rootstocks by measuring the physical properties of the substrate.Cutting was carried out in spring,summer,autumn and winter respectively.After cutting,the morphological changes of cuttings were observed regularly,and the callus rate,germination rate and rooting rate of cuttings were recorded.[Results]The best substrate for citrus rootstock cutting was peat soil,vermiculite and fine river sand(2:1:1).The callus of citrus rootstock in different cutting seasons began to appear in 10-22 d,and the callus rate reached 55%-100%.In terms of budding,the budding time was the earliest in summer and autumn,and slightly later in spring and winter;the germination rate of C.limonia Osbeck‘Hongningmeng’was the highest,and the germination rate of C.sinensis×P.trifoliata‘Zhicheng’and P.trifoliate(L)Raf.‘Zhike’was lower;in terms of rooting,C.limonia Osbeck‘Hongningmeng’had the earliest rooting time and the highest rooting rate and could reach 100%in all seasons;the rooting rate of C.tangerina Tanaka‘Hongju’was 50%-80%;the rooting rate of C.haniana Hort‘Suanju’was 60%-80%;C.sinensis×P.trifoliata‘Zhicheng’and P.trifoliate(L)Raf.‘Zhike’showed the earliest rooting time and the highest rooting rate in summer,and the latest rooting time and the lowest rooting rate in winter,which were only 14.5%.Therefore,different citrus rootstock varieties should choose the appropriate cutting time according to their own characteristics.[Conclusions]The results of this study can provide a scientific basis for a large number of cutting propagation of different citrus rootstocks,and have practical guiding significance for large-scale planting.
基金This work was partially supported by the National Key R&D Program of China under Grant 2019YFB1803301the Key Research and Development Program of Shanxi under Grant 201903D121117+1 种基金Beijing Nova Program of Science and Technology under Grant Z191100001119028the National Natural Science Foundation of China under Grant 62001320.
文摘Re-routing system has become an important technology to improve traffic efficiency.The traditional re-routing schemes do not consider the dynamic characteristics of urban traffic,making the planned routes unable to cope with the changing traf-fic conditions.Based on real-time traffic information,it is challenging to dynamically re-route connected vehicles to alleviate traffic congestion.Moreover,how to obtain global traffic information while reducing communication costs and improving travel efficiency poses a challenge to the re-routing system.To deal with these challenges,this paper proposes CHRT,a clustering-based hybrid re-routing system for traffic congestion avoidance.CHRT develops a multi-layer hybrid architecture.The central server accesses the global view of traffic,and the distributed part is composed of vehicles divided into clusters to reduce latency and communication overhead.Then,a clustering-based priority mechanism is proposed,which sets priorities for clusters based on realtime traffic information to avoid secondary congestion.Furthermore,to plan the optimal routes for vehicles while alleviating global traffic congestion,this paper presents a multi-metric re-routing algorithm.Through extensive simulations based on the SUMO traffic simulator,CHRT reduces vehicle traveling time,fuel consumption,and CO2 emissions compared to other systems.In addition,CHRT globally alleviates traffic congestion and improves traffic efficiency.
基金the National Natural Science Foundation of China (Grant No. 39770396).
文摘Early folliculogenesis involved in the interaction of germ cells and somatic cells is a complicated physiological event. Female germ cells are committed to differentiate into oocytes and finish complete development in the functional units of follicles. Thus there will be great significance in basal research and practices to evaluate the possibility of ovarian cells to reconstitute into follicles in vitro. In the present research, 12-16 dpc (days post coitum) mouse fetal ovarian cells were respectively isolated using collagenase digestion and cultured in droplets in vitro. The results revealed that the fetal ovarian cells of 12-16 dpc appeared to form multiple cell aggregates and tissue-like pieces in vitro. However, 12-13 dpc ovarian cells failed to form the follicles. 14-15 dpc ovarian cells were competent to form a few follicle-like complexes. Furthermore many small typical follicles were reconstituted from 16 dpc ovarian cells in vitro. The results showed for the first time that mouse embryonic
文摘Civets are small mammals belonging to the family Viverridae.The masked palm civets(Paguma larvata)served as an intermediate host in the bat-to-human transmission of severe acute respiratory syndrome coronavirus(SARS-Co V)in 2003(Guan et al.,2003).Because of their unique role in the SARS outbreak,civets were suspected as a potential intermediate host of SARS-Co V-2.
基金The authors would like to acknowledge the financial support from the National Natural Science Foundation of China under grant No.51002071the Program for New Century Excellent Talents in University+1 种基金the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Regionthe Natural Science Foundation of Inner Mongolia under grant No.2011NCL035.
文摘The typical antiferroelectric(AFE)thick films Pb_(0.94)La_(0.04)(Zr_(0.98)Ti_(0.02))O_(3)(PLZT 4/98/2)with different thicknesses of 2,4,6 and 10μm were successfully deposited on Pt(111)/TiO_(2)/SiO_(2)/Si(100)substrates from polyvinylpyrrolidone(PVP)-modified chemical solution.The effects of thickness on the crystalline structure,electrical properties and the energy-storage performance were investigated in detail.X-Ray diffraction analysis and scanning electron microscopy pictures indicated that AFE films with a thickness less than 4m showed a(111)-preferred orientation with uniform surface microstructure.The electrical measurement results illustrated that,as the thickness increased,the saturation polarization,remnant polarization,dielectric constant and leakage current of AFE thick films were enhanced gradually,while the capacitive density and the critical breakdown fields were decreased.Moreover,all the PLZT 4/98/2 AFE films shared the same Curie temperature of about 224℃.As a result,the AFE thick films showed good energy-storage stability in a wide temperature range.The maximum energy-storage density of 47.4 J/cm^(3) was obtained in the 2-μm-thick PLZT 4/98/2 films measured at 3699 kV/cm.