Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve rep...Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication.Nevertheless,the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear.To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves,we collected conditioned culture medium from hypoxia-pretreated neural crest cells,and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation.The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells.We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells.Subsequently,to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons,we used a microfluidic axonal dissociation model of sensory neurons in vitro,and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons,which was greatly dependent on loaded miR-21-5p.Finally,we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb,as well as muscle tissue morphology of the hind limbs,were obviously restored.These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p.miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome.This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves,and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.展开更多
Peripheral nerve fibroblasts play a critical role in nerve development and regeneration.Our previous study found that peripheral nerve fibroblasts have different sensory and motor phenotypes.Fibroblasts of different p...Peripheral nerve fibroblasts play a critical role in nerve development and regeneration.Our previous study found that peripheral nerve fibroblasts have different sensory and motor phenotypes.Fibroblasts of different phenotypes can guide the migration of Schwann cells to the same sensory or motor phenotype.In this study,we analyzed the different effects of peripheral nerve-derived fibroblasts and cardiac fibroblasts on motoneurons.Compared with cardiac fibroblasts,peripheral nerve fibroblasts greatly promoted motoneuron neurite outgrowth.Transcriptome analysis results identified 491 genes that were differentially expressed in peripheral nerve fibroblasts and cardiac fibroblasts.Among these,130 were significantly upregulated in peripheral nerve fibroblasts compared with cardiac fibroblasts.These genes may be involved in axon guidance and neuron projection.Three days after sciatic nerve transection in rats,peripheral nerve fibroblasts accumulated in the proximal and distal nerve stumps,and most expressed brain-derived neurotrophic factor.In vitro,brain-derived neurotrophic factor secreted from peripheral nerve fibroblasts increased the expression ofβ-actin and F-actin through the extracellular regulated protein kinase and serine/threonine kinase pathways,and enhanced motoneuron neurite outgrowth.These findings suggest that peripheral nerve fibroblasts and cardiac fibroblasts exhibit different patterns of gene expression.Peripheral nerve fibroblasts can promote motoneuron neurite outgrowth.展开更多
基金supported by the National Natural Science Foundation of China,No.31870977(to HYS)the National Key Technologies Research and Development Program of China,No.2017YFA0104700(to FD)+2 种基金2022 Jiangsu Funding Program for Excellent Postdoctoral Talent(to MC)Priority Academic Program Development of Jiangsu Higher Education Institutions[PAPD]the Major Project of Basic Science(Natural Science)Research in Higher Education Institutions of Jiangsu Province,No.22KJA180001(to QRH)。
文摘Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication.Nevertheless,the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear.To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves,we collected conditioned culture medium from hypoxia-pretreated neural crest cells,and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation.The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells.We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells.Subsequently,to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons,we used a microfluidic axonal dissociation model of sensory neurons in vitro,and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons,which was greatly dependent on loaded miR-21-5p.Finally,we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb,as well as muscle tissue morphology of the hind limbs,were obviously restored.These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p.miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome.This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves,and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.
基金supported by the National Key Research and Development Program of China,No.2017YFA0104703(to FD)the National Natural Science Foundation of China(Major Program),No.92068112(to FD)+2 种基金Science and Technology Program of Nantong of China,No.JC2020035(to QRH)National Natural Science Foundation of China,Nos.31500927(to QRH)and 31870977(to HYS)the Priority Academic Program Development of Jiangsu High Education Institutions(PAPD)(to FD).
文摘Peripheral nerve fibroblasts play a critical role in nerve development and regeneration.Our previous study found that peripheral nerve fibroblasts have different sensory and motor phenotypes.Fibroblasts of different phenotypes can guide the migration of Schwann cells to the same sensory or motor phenotype.In this study,we analyzed the different effects of peripheral nerve-derived fibroblasts and cardiac fibroblasts on motoneurons.Compared with cardiac fibroblasts,peripheral nerve fibroblasts greatly promoted motoneuron neurite outgrowth.Transcriptome analysis results identified 491 genes that were differentially expressed in peripheral nerve fibroblasts and cardiac fibroblasts.Among these,130 were significantly upregulated in peripheral nerve fibroblasts compared with cardiac fibroblasts.These genes may be involved in axon guidance and neuron projection.Three days after sciatic nerve transection in rats,peripheral nerve fibroblasts accumulated in the proximal and distal nerve stumps,and most expressed brain-derived neurotrophic factor.In vitro,brain-derived neurotrophic factor secreted from peripheral nerve fibroblasts increased the expression ofβ-actin and F-actin through the extracellular regulated protein kinase and serine/threonine kinase pathways,and enhanced motoneuron neurite outgrowth.These findings suggest that peripheral nerve fibroblasts and cardiac fibroblasts exhibit different patterns of gene expression.Peripheral nerve fibroblasts can promote motoneuron neurite outgrowth.