背景:观察性研究表明,他汀类药物可能对骨关节炎(包括膝骨关节炎和髋骨关节炎)具有保护作用,然而他汀类药物与骨关节炎风险之间的关联尚未完全明确。目的:利用大规模人群全基因组关联研究(GWAS)的汇总数据,通过孟德尔随机化分析探究他...背景:观察性研究表明,他汀类药物可能对骨关节炎(包括膝骨关节炎和髋骨关节炎)具有保护作用,然而他汀类药物与骨关节炎风险之间的关联尚未完全明确。目的:利用大规模人群全基因组关联研究(GWAS)的汇总数据,通过孟德尔随机化分析探究他汀类药物与骨关节炎风险之间的关联。方法:他汀类药物相关的单核苷酸多态性数据来自FinnGen最新第9版数据库,骨关节炎、膝骨关节炎和髋骨关节炎数据来自IEU Open GWAS、英国生物库和关节炎研究英国骨性关节炎遗传学(ArcOGEN)数据库。逆方差加权法为评估因果效应的主要分析方法。加权中位数法、简单中位数法、加权中值方法和MR-Egger回归用于补充说明。以比值比和95%CI评价他汀类药物与骨关节炎、膝骨关节炎和髋骨关节炎风险之间的因果关系。其次进行敏感性分析来验证结果的可靠性,使用Cochran’s Q检验异质性,MR-Egger-intercept检验是否存在水平多效性,留一法分析确定是否具有潜在影响的单核苷酸多态性等。结果与结论:①逆方差加权法结果表明,遗传预测的他汀类药物与骨关节炎(OR=0.998,95%CI:0.996-0.999,P=0.01)、膝骨关节炎(OR=0.964,95%CI:0.940-0.989,P=0.005)和髋骨关节炎(OR=0.928,95%CI:0.901-0.955,P=4.28×10^(-7))风险之间存在负向因果关系;②MR-Egger-intercept分析未检测到潜在的水平多效性(骨关节炎:P=0.658;膝骨关节炎:P=0.600;髋骨关节炎:P=0.141);③研究结果为观察性研究所述的他汀类药物降低骨关节炎、膝骨关节炎和髋骨关节炎风险提供了证据,他汀类药物治疗骨关节炎的具体机制需要进一步研究。展开更多
Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l...Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature.展开更多
文摘背景:观察性研究表明,他汀类药物可能对骨关节炎(包括膝骨关节炎和髋骨关节炎)具有保护作用,然而他汀类药物与骨关节炎风险之间的关联尚未完全明确。目的:利用大规模人群全基因组关联研究(GWAS)的汇总数据,通过孟德尔随机化分析探究他汀类药物与骨关节炎风险之间的关联。方法:他汀类药物相关的单核苷酸多态性数据来自FinnGen最新第9版数据库,骨关节炎、膝骨关节炎和髋骨关节炎数据来自IEU Open GWAS、英国生物库和关节炎研究英国骨性关节炎遗传学(ArcOGEN)数据库。逆方差加权法为评估因果效应的主要分析方法。加权中位数法、简单中位数法、加权中值方法和MR-Egger回归用于补充说明。以比值比和95%CI评价他汀类药物与骨关节炎、膝骨关节炎和髋骨关节炎风险之间的因果关系。其次进行敏感性分析来验证结果的可靠性,使用Cochran’s Q检验异质性,MR-Egger-intercept检验是否存在水平多效性,留一法分析确定是否具有潜在影响的单核苷酸多态性等。结果与结论:①逆方差加权法结果表明,遗传预测的他汀类药物与骨关节炎(OR=0.998,95%CI:0.996-0.999,P=0.01)、膝骨关节炎(OR=0.964,95%CI:0.940-0.989,P=0.005)和髋骨关节炎(OR=0.928,95%CI:0.901-0.955,P=4.28×10^(-7))风险之间存在负向因果关系;②MR-Egger-intercept分析未检测到潜在的水平多效性(骨关节炎:P=0.658;膝骨关节炎:P=0.600;髋骨关节炎:P=0.141);③研究结果为观察性研究所述的他汀类药物降低骨关节炎、膝骨关节炎和髋骨关节炎风险提供了证据,他汀类药物治疗骨关节炎的具体机制需要进一步研究。
基金This work was financially supported by Stable Support Plan Program for Higher Education Institutions(20220815094504001)Shenzhen Key Laboratory of Advanced Energy Storage(ZDSYS20220401141000001)+1 种基金This work was also financially supported by the Shenzhen Science and Technology Innovation Commission(GJHZ20200731095606021,20200925155544005)the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone(HZQB-KCZYB-2020083)。
文摘Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature.