Maintaining glutamate homeostasis after hypoxic ischemia is important for synaptic function and neural cell activity,and regulation of glutamate transport between astrocyte and neuron is one of the important modalitie...Maintaining glutamate homeostasis after hypoxic ischemia is important for synaptic function and neural cell activity,and regulation of glutamate transport between astrocyte and neuron is one of the important modalities for reducing glutamate accumulation.However,further research is needed to investigate the dynamic changes in and molecular mechanisms of glutamate transport and the effects of glutamate transport on synapses.The aim of this study was to investigate the regulatory mechanisms underlying Notch pathway mediation of glutamate transport and synaptic plasticity.In this study,Yorkshire neonatal pigs(male,age 3 days,weight 1.0–1.5 kg,n=48)were randomly divided into control(sham surgery group)and five hypoxic ischemia subgroups,according to different recovery time,which were then further subdivided into subgroups treated with dimethyl sulfoxide or a Notch pathway inhibitor(N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester).Once the model was established,immunohistochemistry,immunofluorescence staining,and western blot analyses of Notch pathway-related proteins,synaptophysin,and glutamate transporter were performed.Moreover,synapse microstructure was observed by transmission electron microscopy.At the early stage(6–12 hours after hypoxic ischemia)of hypoxic ischemic injury,expression of glutamate transporter excitatory amino acid transporter-2 and synaptophysin was downregulated,the number of synaptic vesicles was reduced,and synaptic swelling was observed;at 12–24 hours after hypoxic ischemia,the Notch pathway was activated,excitatory amino acid transporter-2 and synaptophysin expression was increased,and the number of synaptic vesicles was slightly increased.Excitatory amino acid transporter-2 and synaptophysin expression decreased after treatment with the Notch pathway inhibitor.This suggests that glutamate transport in astrocytes-neurons after hypoxic ischemic injury is regulated by the Notch pathway and affects vesicle release and synaptic plasticity through the expression of synaptophysin.展开更多
A novel convolutional neural network based on spatial pyramid for image classification is proposed.The network exploits image features with spatial pyramid representation.First,it extracts global features from an orig...A novel convolutional neural network based on spatial pyramid for image classification is proposed.The network exploits image features with spatial pyramid representation.First,it extracts global features from an original image,and then different layers of grids are utilized to extract feature maps from different convolutional layers.Inspired by the spatial pyramid,the new network contains two parts,one of which is just like a standard convolutional neural network,composing of alternating convolutions and subsampling layers.But those convolution layers would be averagely pooled by the grid way to obtain feature maps,and then concatenated into a feature vector individually.Finally,those vectors are sequentially concatenated into a total feature vector as the last feature to the fully connection layer.This generated feature vector derives benefits from the classic and previous convolution layer,while the size of the grid adjusting the weight of the feature maps improves the recognition efficiency of the network.Experimental results demonstrate that this model improves the accuracy and applicability compared with the traditional model.展开更多
Influenza viruses are major respiratory pathogens known to infect human and a variety of animals and are widely prevalent worldwide.Genome structure of influenza D virus(IDV)is identical to that of influenza C virus(I...Influenza viruses are major respiratory pathogens known to infect human and a variety of animals and are widely prevalent worldwide.Genome structure of influenza D virus(IDV)is identical to that of influenza C virus(ICV),and phylogenetic analyses suggest that IDV and ICV share a common ancestry and high homology.To date,the prevalence of ICV and IDV in China is unclear,but these viruses represent a potential threat to public health due to cross-species transmission and zoonotic potential.To efficiently monitor ICV and IDV,it is necessary to establish a dual detection method to understand their prevalence and conduct in-depth research.A duplex real-time PCR method for the simultaneous detection of ICV and IDV was developed.TaqMan fluorescent probes and specific primers targeting NP gene of ICV and PB1 gene of IDV were designed.This method exhibited good specificity and sensitivity,and the detection limit reached 1 × 10^(1) copies/pL of plasmid standards of each pathogen.Thirty-one clinical swine samples and 10 clinical cattle samples were analyzed using this method.One positive sample of IDV was detected,and the accuracy of clinical test results was verified by conventional PCR and DNA sequencing.The duplex real-time PCR detection method represents a sensitive and specific tool to detect IG/and IDV,It provides technical support for virus research and clinical diagnosis of ICV and IDV.This information will benefit animal and human health.展开更多
水文大数据相关研究是近些年水文领域的研究重点和核心问题,同时也是提高水文事务处理效率和增强水文规律真实性及可信性的重要内容。现将从中国知网(CNKI)收录的264篇文献和Web of Science(WOS)收录的219篇文献作为样本数据,利用CiteSp...水文大数据相关研究是近些年水文领域的研究重点和核心问题,同时也是提高水文事务处理效率和增强水文规律真实性及可信性的重要内容。现将从中国知网(CNKI)收录的264篇文献和Web of Science(WOS)收录的219篇文献作为样本数据,利用CiteSpace软件对其进行研究人员、研究机构及热点分析,深入探索该领域研究的发展趋势。研究表明:从发文量总体来看,国内和国际发文量均呈现上升趋势。从研究人员和研究机构来看,国内学者和机构间呈现“大分散,小聚集”的现象。从研究热点来看,以“智慧水文”“预警系统”“Big data testing”等为突现关键词意味着该领域的研究重点逐渐向技术化、数字化方向演进,无论在国内还是国际,现代的水文监测技术与水文学方法相对于传统的技术和方法,均具有更高的准确性和稳定性,可以更充分地满足实际应用需求,将水文和大数据相结合逐渐成为了该领域的研究趋势。展开更多
基金supported by the National Natural Science Foundation of China,Nos.81871408 and 81271631(to XMW)National Science Foundation for Young Scientists of China,No.81801658(to YZ)+1 种基金Outstanding Scientific Fund of Shengjing Hospital,No.201402(to XMW)345 Talent Support Project of Shengjing Hospital,No.30B(to YZ)。
文摘Maintaining glutamate homeostasis after hypoxic ischemia is important for synaptic function and neural cell activity,and regulation of glutamate transport between astrocyte and neuron is one of the important modalities for reducing glutamate accumulation.However,further research is needed to investigate the dynamic changes in and molecular mechanisms of glutamate transport and the effects of glutamate transport on synapses.The aim of this study was to investigate the regulatory mechanisms underlying Notch pathway mediation of glutamate transport and synaptic plasticity.In this study,Yorkshire neonatal pigs(male,age 3 days,weight 1.0–1.5 kg,n=48)were randomly divided into control(sham surgery group)and five hypoxic ischemia subgroups,according to different recovery time,which were then further subdivided into subgroups treated with dimethyl sulfoxide or a Notch pathway inhibitor(N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester).Once the model was established,immunohistochemistry,immunofluorescence staining,and western blot analyses of Notch pathway-related proteins,synaptophysin,and glutamate transporter were performed.Moreover,synapse microstructure was observed by transmission electron microscopy.At the early stage(6–12 hours after hypoxic ischemia)of hypoxic ischemic injury,expression of glutamate transporter excitatory amino acid transporter-2 and synaptophysin was downregulated,the number of synaptic vesicles was reduced,and synaptic swelling was observed;at 12–24 hours after hypoxic ischemia,the Notch pathway was activated,excitatory amino acid transporter-2 and synaptophysin expression was increased,and the number of synaptic vesicles was slightly increased.Excitatory amino acid transporter-2 and synaptophysin expression decreased after treatment with the Notch pathway inhibitor.This suggests that glutamate transport in astrocytes-neurons after hypoxic ischemic injury is regulated by the Notch pathway and affects vesicle release and synaptic plasticity through the expression of synaptophysin.
基金Supported by the National Natural Science Foundation of China(61601176)the Science and Technology Foundation of Hubei Provincial Department of Education(Q20161405)
文摘A novel convolutional neural network based on spatial pyramid for image classification is proposed.The network exploits image features with spatial pyramid representation.First,it extracts global features from an original image,and then different layers of grids are utilized to extract feature maps from different convolutional layers.Inspired by the spatial pyramid,the new network contains two parts,one of which is just like a standard convolutional neural network,composing of alternating convolutions and subsampling layers.But those convolution layers would be averagely pooled by the grid way to obtain feature maps,and then concatenated into a feature vector individually.Finally,those vectors are sequentially concatenated into a total feature vector as the last feature to the fully connection layer.This generated feature vector derives benefits from the classic and previous convolution layer,while the size of the grid adjusting the weight of the feature maps improves the recognition efficiency of the network.Experimental results demonstrate that this model improves the accuracy and applicability compared with the traditional model.
基金This work was financially supported by the National Key Research and Development Program of China(2017YFD0500101)the Fundamental Research Funds for the Central Universities(Y0201900459).
文摘Influenza viruses are major respiratory pathogens known to infect human and a variety of animals and are widely prevalent worldwide.Genome structure of influenza D virus(IDV)is identical to that of influenza C virus(ICV),and phylogenetic analyses suggest that IDV and ICV share a common ancestry and high homology.To date,the prevalence of ICV and IDV in China is unclear,but these viruses represent a potential threat to public health due to cross-species transmission and zoonotic potential.To efficiently monitor ICV and IDV,it is necessary to establish a dual detection method to understand their prevalence and conduct in-depth research.A duplex real-time PCR method for the simultaneous detection of ICV and IDV was developed.TaqMan fluorescent probes and specific primers targeting NP gene of ICV and PB1 gene of IDV were designed.This method exhibited good specificity and sensitivity,and the detection limit reached 1 × 10^(1) copies/pL of plasmid standards of each pathogen.Thirty-one clinical swine samples and 10 clinical cattle samples were analyzed using this method.One positive sample of IDV was detected,and the accuracy of clinical test results was verified by conventional PCR and DNA sequencing.The duplex real-time PCR detection method represents a sensitive and specific tool to detect IG/and IDV,It provides technical support for virus research and clinical diagnosis of ICV and IDV.This information will benefit animal and human health.
文摘水文大数据相关研究是近些年水文领域的研究重点和核心问题,同时也是提高水文事务处理效率和增强水文规律真实性及可信性的重要内容。现将从中国知网(CNKI)收录的264篇文献和Web of Science(WOS)收录的219篇文献作为样本数据,利用CiteSpace软件对其进行研究人员、研究机构及热点分析,深入探索该领域研究的发展趋势。研究表明:从发文量总体来看,国内和国际发文量均呈现上升趋势。从研究人员和研究机构来看,国内学者和机构间呈现“大分散,小聚集”的现象。从研究热点来看,以“智慧水文”“预警系统”“Big data testing”等为突现关键词意味着该领域的研究重点逐渐向技术化、数字化方向演进,无论在国内还是国际,现代的水文监测技术与水文学方法相对于传统的技术和方法,均具有更高的准确性和稳定性,可以更充分地满足实际应用需求,将水文和大数据相结合逐渐成为了该领域的研究趋势。