Previous studies have shown that transcranial pulse current stimulation(tPCS) can increase cerebral neural plasticity and improve patients' locomotor function.However, the precise mechanisms underlying this effect...Previous studies have shown that transcranial pulse current stimulation(tPCS) can increase cerebral neural plasticity and improve patients' locomotor function.However, the precise mechanisms underlying this effect remain unclear.In the present study, rat models of stroke established by occlusion of the right cerebral middle artery were subjected to tPCS, 20 minutes per day for 7 successive days.tPCS significantly reduced the Bederson score, increased the foot print area of the affected limbs, and reduced the standing time of affected limbs of rats with stroke compared with that before intervention.Immunofluorescence staining and western blot assay revealed that tPCS significantly increased the expression of microtubule-associated protein-2 and growth-associated protein-43 around the ischemic penumbra.This finding suggests that tPCS can improve the locomotor function of rats with stroke by regulating the expression of microtubule-associated protein-2 and growth-associated protein-43 around the ischemic penumbra.These findings may provide a new method for the clinical treatment of poststroke motor dysfunction and a theoretical basis for clinical application of tPCS.The study was approved by the Animal Use and Management Committee of Shanghai University of Traditional Chinese Medicine of China(approval No.PZSHUTCM190315003) on February 22, 2019.展开更多
As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is c...As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.展开更多
As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is con...As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Mountains was used to reconstruct the summer(June-August)maximum temperature(Tmax6-8) variations from 1718 to2017.The reconstruction explained 53.1% of the variance in the observed Tmax6-8.Over the past 300 years,the Tmax6-8reconstruction showed clear interannual and decadal variabilities.There was a significant warming trend(0.18 ℃/decade) after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The Tmax6-8variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the summer North Atlantic Oscillation.This study reveals that climate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mechanisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.展开更多
Umbilical cord blood (UCB) is a current major source of hematopoietic stem cells (HSCs) for cell transplantation therapy. Cell transplantation with HSCs derived from UCB is advantageous over transplantation with HSCs ...Umbilical cord blood (UCB) is a current major source of hematopoietic stem cells (HSCs) for cell transplantation therapy. Cell transplantation with HSCs derived from UCB is advantageous over transplantation with HSCs from adult tissues. However, the low number of HSC derived from a single unit of UCB limits its application. Thus,<i> ex vivo</i> expansion is a good option to create more UCB HSCs for clinical application. The strategies for HSC expansion <i>in vitro</i> focus on mimicking the composition and structure of HSC natural niche by enhancing self-renewal and inhibiting lineage differentiation of HSCs. In the past decade, the mechanisms of the interaction between HSC and the natural niche have been deeply investigated. This great progress in basic research has led to advancements in UCB HSC<i> ex vivo</i> expansion. In addition, the biological characteristics of the originally isolated UCB HSCs correlate with outcome of subsequent<i> ex vivo</i> expansion. In this paper, we summarize the late progress achieved in isolation and<i> ex vivo</i> expansion of UCB HSCs. Importantly, we attempt to provide an impact and practicable procedure to expand UCB HSC <i>in vitro</i> from isolation of original HSCs to identification of expanded HSCs.展开更多
水泥生产过程中,分解炉出口温度是非常重要的工艺参数,为了应对出口温度变量的多样性,文章提出一种核主成分分析(kernel principal component analysis,KPCA)与双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络相...水泥生产过程中,分解炉出口温度是非常重要的工艺参数,为了应对出口温度变量的多样性,文章提出一种核主成分分析(kernel principal component analysis,KPCA)与双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络相结合的温度预测组合模型用来预测分解炉的出口温度。通过KPCA筛选出影响因素的主成分从而达到数据降维目的,将降维后的主成分作为BiLSTM神经网络的输入,分解炉出口温度作为BiLSTM神经网络的输出。经BiLSTM神经网络训练,得到分解炉出口温度预测模型。通过对比验证表明,使用KPCA-BiLSTM相结合的温度预测模型具有较好的预测精度。展开更多
N-doped carbons were fabricated from zeolite-templated carbon via modification with melamine and mild KOH activation. The N-doping treatment and KOH activation slightly lowered the surface areas of pristine zeolite-te...N-doped carbons were fabricated from zeolite-templated carbon via modification with melamine and mild KOH activation. The N-doping treatment and KOH activation slightly lowered the surface areas of pristine zeolite-templated carbon; nonetheless, N-doped carbons with a lower surface area exhibited much higher capacitance and cycling stability as fabricated into symmetric supercapacitor. Significantly, N-doped carbon obtained at 700°C showed a capacitance of 45.7 F/g at 0.1 A/g and 42.0 F/g at 10 A/g for the fabricated supercapacitor with 6 M KOH electrolyte, with 92% retention of initial capacitance as current density increased up to 100-fold. This performance was attributed to the dual contribution of electric double-layer capacitance and pseudo-capacitance. The assembled supercapacitor also exhibited excellent cycling stability, with 91% capacitance retention at 10 A/g after 10000 cycles.展开更多
Objective The successful establishment of a tumor cell bank is based on the premise that the target cells can be cultured by a legitimate approach.In this experiment,we used primary culture to select and detect breast...Objective The successful establishment of a tumor cell bank is based on the premise that the target cells can be cultured by a legitimate approach.In this experiment,we used primary culture to select and detect breast cancer cells in vitro,which can provide experimental ideas and methods for the establishment of a living tumor tissue cell bank.Methods Fifty-two specimens were collected over a two-year period from people with breast cancer who needed surgical treatment in our hospital.Cells were isolated and used to establish successful cell culture.Cell activity and cell purity were measured before liquid nitrogen cryopreservation.Results(1)At the initial culture stage,cells grew with adherence.Cell multiplication could be seen after the cell medium was exchanged three times.Cell viability was above 86%,while the viability of the target cells was above 75%,as detected by hematoxylin and eosin(HE)staining.(2)The number of breast cancer cells decreased,while the number of fibroblasts increased after five rounds of passage.(3)The success rate was 73.08%,which did not include polluted cells and those that were not successfully cryopreserved.Conclusion(1)breast cancer cells could be selected from primary culture in vitro through an appropriate method.(2)Exchange of the cell medium and further cell passage improved cell multiplication.(3)The experimental results could be monitored using trypan blue and HE staining.(4)The success of breast cancer cell culture in vitro could be used as a reference for other cell culture,so as to establish a tumor tissue cell bank.展开更多
Objective To investigate the impact of 1, 25-(OH)2D3 on left ventricular hypertrophy(LVH) in type 2 diabetic rats. Methods Type 2 diabetic mellitus(DM) model rats were established by intraperitoneally injecting with 3...Objective To investigate the impact of 1, 25-(OH)2D3 on left ventricular hypertrophy(LVH) in type 2 diabetic rats. Methods Type 2 diabetic mellitus(DM) model rats were established by intraperitoneally injecting with 30 mg/kg streptozotocin. After 8 weeks, 19 male rats were identified as diabetic with left ventricular hypertrophy(LVH) by ultrasound examination, and randomly assigned into three groups: untreated(DM-LVH, n=7), treated with insulin(DM-LVH+INS, n=6), and treated with 1, 25-(OH)2D3(DM-LVH+VD, n=6). Healthy male rats were used as the controls group(n=6). The fasting blood glucose and the insulin level were determined weekly. The left ventricular mass index, myocardial collagen content, collagen volume fraction, and 1, 25-(OH)2D3-receptor level were determined by 4 weeks later. Results In the DM-LVH model group, the insulin level was significantly decreased compared with the non-diabetic control group(P<0.05), whereas the blood glucose, left ventricular mass index, myocardial collagen content, collagen volume fraction, and 1, 25-(OH)2D3-receptor expression were significantly increased(all P<0.05). In the DM-LVH+INS and DM-LVH+VD groups, the insulin levels were significantly increased compared with the DM-LVH model group(P<0.05), whereas the other parameters were significantly decreased(all P<0.05). Conclusion 1, 25-(OH)2D3 could reverse LVH in diabetic rats and that the mechanism may involve stimulating insulin secretion and reducing blood glucose via direct up-regulation of 1, 25-(OH)2D3-receptor expression.展开更多
FA-Cs mixed-cation perovskite has been reported as a promising candidate for obtaining highly efficient and stable photovoltaic devices.Phenylethylamine iodide(PEAI)post-treatment is a widely used and effective method...FA-Cs mixed-cation perovskite has been reported as a promising candidate for obtaining highly efficient and stable photovoltaic devices.Phenylethylamine iodide(PEAI)post-treatment is a widely used and effective method for surface passivation of FA-Cs perovskite layer in devices.However,it is still controversial whether the PEAI post-treatment would form two-dimensional(2D)perovskite PEA_(2)PbI_(4) capping layer or just result in PEA+terminated surface.Here in this work,the function of PEAI post-treatment on FA-Cs mixed-cation perovskite FA_(1-x)Cs_(x)PbI_(3)(x=0.1–0.9)with varied Cs contents is elucidated.With increased Cs content,the FA-Cs perovskite shows higher resistance to the cation exchange between FA+and PEA+.This Cs-content-dependent cation exchange results in the different PEAI reaction preferences with FA-Cs mixed-cation perovskites.Furthermore,higher Cs content with stronger resistance to cation exchange reaction leads to a wider processing window for post-treatment and defect passivation,which is beneficial for the fabrication of large-scale photovoltaic devices.展开更多
Anionic redox reaction(ARR) in layered manganese-based oxide cathodes has been considered as an effective strategy to improve the energy density of sodium-ion batteries.Mn-vacancy layered oxides deliver a high ARR-rel...Anionic redox reaction(ARR) in layered manganese-based oxide cathodes has been considered as an effective strategy to improve the energy density of sodium-ion batteries.Mn-vacancy layered oxides deliver a high ARR-related capacity with small voltage hysteresis,however,they are limited by rapid capacity degradation and poor rate capability,which arise from inferior structure changes due to repeated redox of lattice oxygen.Herein,redox-inactive Ti^(4+)is introduced to substitute partial Mn^(4+)to form Na_(2) Ti_(0.5)Mn_(2.5)O_7(Na_(4/7)[□_(1/7)Ti_(1/7)Mn_(5/7)]O_(2),□ for Mn vacancies),which can effectively restrain unfavorable interlayer gliding of Na2 Mn307 at high charge voltages,as reflected by an ultralow-strain volume variation of 0.11%.There is no irreversible O_(2) evolution observed in Na_(2) Ti_(0.5)Mn_(2.5)O_7 upon charging,which stabilizes the lattice oxygen and ensures the overall structural stability.It exhibits increased capacity retention of 79.1% after 60 cycles in Na_(2) Ti_(0.5)Mn_(2.5)O_7(17.1% in Na_(2) Mn_(3) O_7) and good rate capability(92.1 mAh g^(-1) at 0.5 A g^(-1)).This investigation provides new insights into designing high-performance cathode materials with reversible ARR and structural stability for SIBs.展开更多
Objective This study aimed to compare the anti-tumor effects of cytokine-induced killer (CIK) cellsinduced by autologous cytokines in patients with breast cancer and those of allogeneic CIK cells fromhealthy adults.Me...Objective This study aimed to compare the anti-tumor effects of cytokine-induced killer (CIK) cellsinduced by autologous cytokines in patients with breast cancer and those of allogeneic CIK cells fromhealthy adults.Methods We used conventional methods to induce CIK cells originating from two peripheral bloodmononuclear cell types (from patients with breast cancer and healthy adults). Killing activity was detectedusing an LDH assay, immunophenotypic changes were analyzed by flow cytometry, and the IFN-γ level ofculture supernatants was detected by ELISA.Results The results showed that the proliferative capacity of the allogeneic CIK cells was significantlyhigher than that of the autologous CIK cells. Compared with autologous CIK cells, the allogeneic CIK cellshad significantly enhanced anti-tumor activity against SKBR-3 cells (P < 0.01) and IFN-γ secretion (P <0.05);moreover, they increased the ratio of CD3+ CD56+ cells and CD3+ CD8+ cells (P < 0.05).Conclusion Healthy adult-derived induced CIK cells exhibited a stronger anti-tumor effect than inducedCIK cells derived from patients with breast cancer. The results of this study could provide experimentalevidence for the clinical application of CIK cells.展开更多
Objective The aim of this study was to enhance the treatment effect of tumor purified autogenous heat shock protein 70-peptide complexes(HSP70-PCs)on HER-3-overexpressing breast cancer.Methods In this study,we first s...Objective The aim of this study was to enhance the treatment effect of tumor purified autogenous heat shock protein 70-peptide complexes(HSP70-PCs)on HER-3-overexpressing breast cancer.Methods In this study,we first studied the expression of HER-3 in breast cancer tissues and its relationship with patient characteristics.We then purified HSP70-PCs from primary breast cancer cells with different HER-2 and HER-3 expression profiles and determined the cytotoxicity of autogenous dendritic cells(DCs)and CD8+T cells induced by these complexes.Third,recombinant human HSP70-HER-3 protein complexes were used to inhibit the autogenous HSP70-PCs purified from HER-3-overexpressing breast cancer cells,and the resulting immunological response was examined.Results The results show that HSP70-PCs can be combined with recombinant HSP70-HER-3 protein complexes to induce stronger immunological responses than autogenous HSP70-PCs alone and that these treatments induce autogenous CD8+T cell killing of HER-3-positive breast cancer cells.Conclusion These findings provide a new direction for HSP70-DC-based immunotherapy for patients with HER-3-overexpressing breast cancer.展开更多
Background:To analyze the clinical features of convalescent individuals with novel coronavirus-infected pneumonia(novel coronavirus pneumonia)at rehabilitation station in Wuhan.Methods:712 patients in the convalescenc...Background:To analyze the clinical features of convalescent individuals with novel coronavirus-infected pneumonia(novel coronavirus pneumonia)at rehabilitation station in Wuhan.Methods:712 patients in the convalescence period of novel coronavirus pneumonia isolated and observed at the rehabilitation station were investigated by collecting their basic data,clinical syndrome features,and tongue manifestations.The clinical syndrome features were analyzed based on guidelines of Diagnosis and Treatment Plan for Novel Coronavirus-infected Pneumonia(National Health Commission of the People’s Republic of China,7th Trial Edition).Results:Cough(24.86%),chest tightness and shortness of breath(23.17%),and fatigue(16.57%)were the main symptoms of patients in the convalescence period of novel coronavirus pneumonia.Their tongue appearance was mostly characterized by redness(88.65%),thick coating(67.25%),greasy coating(49.78%)and white coating(76.86%).Conclusion:Compared with the ordinary/mild patients,cough and anorexia symptoms were more common in the severe/critical patients.In convalescent patients,red and fat tongue with thick greasy fur were common.展开更多
Comprehensive Summary Layered transition-metal oxides are promising cathode candidates for sodium-ion batteries.However,the inferior interphase formation and particulate fracture during sodiation/desodiation result in...Comprehensive Summary Layered transition-metal oxides are promising cathode candidates for sodium-ion batteries.However,the inferior interphase formation and particulate fracture during sodiation/desodiation result in structure degradation and poor stability.Herein,the interface chemistry of P2-Na_(0.640)Ni_(0.343)Mn_(0.657)O_(2)in an electrolyte of 1.0 mol/L NaPF6 in diglyme is unveiled to enable highly reversible Na extraction and intercalation.The uniform and robust cathode-electrolyte interphase layer is in situ formed with decomposition of diglyme molecules and anions in initial cycles.The NaF-and CO-rich CEI film exhibits high mechanical strength and ionic conductivity,which suppresses the reconstruction of its electrode interphase from P2 phase to spinel-like structure and reinforces its structure integrity without cracks.This favours facile Na+transport and stable bulk redox reactions.It is demonstrated to show long cycling stability with capacity retention of 94.4%for 180 cycles and superior rate capability.This investigation highlights the cathode interphase chemistry in sodium-ion batteries.展开更多
Highly reactive radical species play an important role in syn-thetic chemistry, industrial processes, and environmental remedi-ation applications [1,2]. The radicals can be formed by eitherthermal decomposition of hig...Highly reactive radical species play an important role in syn-thetic chemistry, industrial processes, and environmental remedi-ation applications [1,2]. The radicals can be formed by eitherthermal decomposition of highly active oxidants or by catalyticactivation of stable oxidants under mild conditions [2]. Recently,the sulfate radical (.504) with its advantages of strong oxidizingpower, selective reactivity, and stability over a broad range of pHhas emerged as an excellent and versatile oxidant for a variety ofapplication [5].展开更多
Low-bandgap formamidinium-cesium(FA-Cs)perovskites of FA_(1-x)CsxPbI_(3)(x<0:1)are promising candidates for efficient and robust perovskite solar cells,but their black-phase crystallization is very sensitive to ann...Low-bandgap formamidinium-cesium(FA-Cs)perovskites of FA_(1-x)CsxPbI_(3)(x<0:1)are promising candidates for efficient and robust perovskite solar cells,but their black-phase crystallization is very sensitive to annealing temperature.Unfortunately,the low heat conductivity of the glass substrate builds up a temperature gradient within from bottom to top and makes the initial annealing temperature of the perovskite film lower than the black-phase crystallization point(~150℃).Herein,we take advantage of such temperature gradient for the diffusional growth of high-quality FA-Cs perovskites by introducing a thermally unstable MA^(+)cation,which would firstly formα-phase FA-MA-Cs mixed perovskites with low formation energy at the hot bottom of the perovskite films in the early annealing stage.The natural gradient annealing temperature and the thermally unstable MA^(+)cation then lead to the bottom-to-top diffusional growth of highly orientatedα-phase FA-Cs perovskite,which exhibits 10-fold of enhanced crystallinity and reduced trap density(~3:85×10^(15) cm^(−3)).Eventually,such FA-Cs perovskite films were fabricated into stable solar cell devices with champion efficiency up to 23.11%,among the highest efficiency of MA-free perovskite solar cells.展开更多
基金supported by the National Key R&D Program of China, No.2018 YFC2001600(to CLS)the Shanghai Health Commission Accelerated the Development of Traditional Chinese Medicine Three-Year Action Plan Project, No.ZY(2018-2020)-CCCX-2001-06/2004-05(to CLS)+1 种基金the Program of Shanghai Academic Research Leader, No.19 XD1403600(to CLS)the National Natural Science Foundation of China for the Youth Project, No.81704163(to JJZ)。
文摘Previous studies have shown that transcranial pulse current stimulation(tPCS) can increase cerebral neural plasticity and improve patients' locomotor function.However, the precise mechanisms underlying this effect remain unclear.In the present study, rat models of stroke established by occlusion of the right cerebral middle artery were subjected to tPCS, 20 minutes per day for 7 successive days.tPCS significantly reduced the Bederson score, increased the foot print area of the affected limbs, and reduced the standing time of affected limbs of rats with stroke compared with that before intervention.Immunofluorescence staining and western blot assay revealed that tPCS significantly increased the expression of microtubule-associated protein-2 and growth-associated protein-43 around the ischemic penumbra.This finding suggests that tPCS can improve the locomotor function of rats with stroke by regulating the expression of microtubule-associated protein-2 and growth-associated protein-43 around the ischemic penumbra.These findings may provide a new method for the clinical treatment of poststroke motor dysfunction and a theoretical basis for clinical application of tPCS.The study was approved by the Animal Use and Management Committee of Shanghai University of Traditional Chinese Medicine of China(approval No.PZSHUTCM190315003) on February 22, 2019.
基金This study was supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101)the China Desert Meteorological Science Research Foundation(Sqj2022012)+3 种基金the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307)the National Natural Science Foundation of China(42361144712)the Chinese Academy of Sciences(XDB40010300)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).
文摘As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101)the China Desert Meteorological Science Research Foundation(Sqj2022012)+3 种基金the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307)the National Natural Science Foundation of China(42361144712)the Chinese Academy of Sciences(XDB40010300)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).
文摘As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Mountains was used to reconstruct the summer(June-August)maximum temperature(Tmax6-8) variations from 1718 to2017.The reconstruction explained 53.1% of the variance in the observed Tmax6-8.Over the past 300 years,the Tmax6-8reconstruction showed clear interannual and decadal variabilities.There was a significant warming trend(0.18 ℃/decade) after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The Tmax6-8variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the summer North Atlantic Oscillation.This study reveals that climate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mechanisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.
文摘Umbilical cord blood (UCB) is a current major source of hematopoietic stem cells (HSCs) for cell transplantation therapy. Cell transplantation with HSCs derived from UCB is advantageous over transplantation with HSCs from adult tissues. However, the low number of HSC derived from a single unit of UCB limits its application. Thus,<i> ex vivo</i> expansion is a good option to create more UCB HSCs for clinical application. The strategies for HSC expansion <i>in vitro</i> focus on mimicking the composition and structure of HSC natural niche by enhancing self-renewal and inhibiting lineage differentiation of HSCs. In the past decade, the mechanisms of the interaction between HSC and the natural niche have been deeply investigated. This great progress in basic research has led to advancements in UCB HSC<i> ex vivo</i> expansion. In addition, the biological characteristics of the originally isolated UCB HSCs correlate with outcome of subsequent<i> ex vivo</i> expansion. In this paper, we summarize the late progress achieved in isolation and<i> ex vivo</i> expansion of UCB HSCs. Importantly, we attempt to provide an impact and practicable procedure to expand UCB HSC <i>in vitro</i> from isolation of original HSCs to identification of expanded HSCs.
文摘水泥生产过程中,分解炉出口温度是非常重要的工艺参数,为了应对出口温度变量的多样性,文章提出一种核主成分分析(kernel principal component analysis,KPCA)与双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络相结合的温度预测组合模型用来预测分解炉的出口温度。通过KPCA筛选出影响因素的主成分从而达到数据降维目的,将降维后的主成分作为BiLSTM神经网络的输入,分解炉出口温度作为BiLSTM神经网络的输出。经BiLSTM神经网络训练,得到分解炉出口温度预测模型。通过对比验证表明,使用KPCA-BiLSTM相结合的温度预测模型具有较好的预测精度。
基金financially supported by the National Natural Science Foundation of China (No. 21506184)Hunan 2011 Collaborative Center of Chemical Technologies for Environmental Benignity & Efficient Resource Utilization, and State Key Laboratory of Powder Metallurgy of Central South University
文摘N-doped carbons were fabricated from zeolite-templated carbon via modification with melamine and mild KOH activation. The N-doping treatment and KOH activation slightly lowered the surface areas of pristine zeolite-templated carbon; nonetheless, N-doped carbons with a lower surface area exhibited much higher capacitance and cycling stability as fabricated into symmetric supercapacitor. Significantly, N-doped carbon obtained at 700°C showed a capacitance of 45.7 F/g at 0.1 A/g and 42.0 F/g at 10 A/g for the fabricated supercapacitor with 6 M KOH electrolyte, with 92% retention of initial capacitance as current density increased up to 100-fold. This performance was attributed to the dual contribution of electric double-layer capacitance and pseudo-capacitance. The assembled supercapacitor also exhibited excellent cycling stability, with 91% capacitance retention at 10 A/g after 10000 cycles.
基金a grant from the Science Foundation of Inner Mongolia Autonomous Region People’s Hospital(No.2016015).
文摘Objective The successful establishment of a tumor cell bank is based on the premise that the target cells can be cultured by a legitimate approach.In this experiment,we used primary culture to select and detect breast cancer cells in vitro,which can provide experimental ideas and methods for the establishment of a living tumor tissue cell bank.Methods Fifty-two specimens were collected over a two-year period from people with breast cancer who needed surgical treatment in our hospital.Cells were isolated and used to establish successful cell culture.Cell activity and cell purity were measured before liquid nitrogen cryopreservation.Results(1)At the initial culture stage,cells grew with adherence.Cell multiplication could be seen after the cell medium was exchanged three times.Cell viability was above 86%,while the viability of the target cells was above 75%,as detected by hematoxylin and eosin(HE)staining.(2)The number of breast cancer cells decreased,while the number of fibroblasts increased after five rounds of passage.(3)The success rate was 73.08%,which did not include polluted cells and those that were not successfully cryopreserved.Conclusion(1)breast cancer cells could be selected from primary culture in vitro through an appropriate method.(2)Exchange of the cell medium and further cell passage improved cell multiplication.(3)The experimental results could be monitored using trypan blue and HE staining.(4)The success of breast cancer cell culture in vitro could be used as a reference for other cell culture,so as to establish a tumor tissue cell bank.
基金Supported by the Research Fund for Public Health of the Health and Family Planning Commission of Wuhan Municipality(WG13B12)
文摘Objective To investigate the impact of 1, 25-(OH)2D3 on left ventricular hypertrophy(LVH) in type 2 diabetic rats. Methods Type 2 diabetic mellitus(DM) model rats were established by intraperitoneally injecting with 30 mg/kg streptozotocin. After 8 weeks, 19 male rats were identified as diabetic with left ventricular hypertrophy(LVH) by ultrasound examination, and randomly assigned into three groups: untreated(DM-LVH, n=7), treated with insulin(DM-LVH+INS, n=6), and treated with 1, 25-(OH)2D3(DM-LVH+VD, n=6). Healthy male rats were used as the controls group(n=6). The fasting blood glucose and the insulin level were determined weekly. The left ventricular mass index, myocardial collagen content, collagen volume fraction, and 1, 25-(OH)2D3-receptor level were determined by 4 weeks later. Results In the DM-LVH model group, the insulin level was significantly decreased compared with the non-diabetic control group(P<0.05), whereas the blood glucose, left ventricular mass index, myocardial collagen content, collagen volume fraction, and 1, 25-(OH)2D3-receptor expression were significantly increased(all P<0.05). In the DM-LVH+INS and DM-LVH+VD groups, the insulin levels were significantly increased compared with the DM-LVH model group(P<0.05), whereas the other parameters were significantly decreased(all P<0.05). Conclusion 1, 25-(OH)2D3 could reverse LVH in diabetic rats and that the mechanism may involve stimulating insulin secretion and reducing blood glucose via direct up-regulation of 1, 25-(OH)2D3-receptor expression.
基金supported by the National Key Research and Development Program of China(2017YFE0127100)the National Natural Science Foundation of China(NSFC,Grant 22025505)+1 种基金the Program of Shanghai Academic Technology Research Leader(Grant 20XD1422200)the Key Laboratory of Resource Chemistry,Ministry of Education(KLRC_ME2003)。
文摘FA-Cs mixed-cation perovskite has been reported as a promising candidate for obtaining highly efficient and stable photovoltaic devices.Phenylethylamine iodide(PEAI)post-treatment is a widely used and effective method for surface passivation of FA-Cs perovskite layer in devices.However,it is still controversial whether the PEAI post-treatment would form two-dimensional(2D)perovskite PEA_(2)PbI_(4) capping layer or just result in PEA+terminated surface.Here in this work,the function of PEAI post-treatment on FA-Cs mixed-cation perovskite FA_(1-x)Cs_(x)PbI_(3)(x=0.1–0.9)with varied Cs contents is elucidated.With increased Cs content,the FA-Cs perovskite shows higher resistance to the cation exchange between FA+and PEA+.This Cs-content-dependent cation exchange results in the different PEAI reaction preferences with FA-Cs mixed-cation perovskites.Furthermore,higher Cs content with stronger resistance to cation exchange reaction leads to a wider processing window for post-treatment and defect passivation,which is beneficial for the fabrication of large-scale photovoltaic devices.
基金Financial supports from the National Natural Science Foundation of China (21822506 and 51761165025)the Tianjin Natural Science Foundation (19JCJQJC62400)the 111 project of B12015。
文摘Anionic redox reaction(ARR) in layered manganese-based oxide cathodes has been considered as an effective strategy to improve the energy density of sodium-ion batteries.Mn-vacancy layered oxides deliver a high ARR-related capacity with small voltage hysteresis,however,they are limited by rapid capacity degradation and poor rate capability,which arise from inferior structure changes due to repeated redox of lattice oxygen.Herein,redox-inactive Ti^(4+)is introduced to substitute partial Mn^(4+)to form Na_(2) Ti_(0.5)Mn_(2.5)O_7(Na_(4/7)[□_(1/7)Ti_(1/7)Mn_(5/7)]O_(2),□ for Mn vacancies),which can effectively restrain unfavorable interlayer gliding of Na2 Mn307 at high charge voltages,as reflected by an ultralow-strain volume variation of 0.11%.There is no irreversible O_(2) evolution observed in Na_(2) Ti_(0.5)Mn_(2.5)O_7 upon charging,which stabilizes the lattice oxygen and ensures the overall structural stability.It exhibits increased capacity retention of 79.1% after 60 cycles in Na_(2) Ti_(0.5)Mn_(2.5)O_7(17.1% in Na_(2) Mn_(3) O_7) and good rate capability(92.1 mAh g^(-1) at 0.5 A g^(-1)).This investigation provides new insights into designing high-performance cathode materials with reversible ARR and structural stability for SIBs.
基金Supported by a grant from the National Natural Sciences Foundation of Inner Mongolia(No.2012MS1102).
文摘Objective This study aimed to compare the anti-tumor effects of cytokine-induced killer (CIK) cellsinduced by autologous cytokines in patients with breast cancer and those of allogeneic CIK cells fromhealthy adults.Methods We used conventional methods to induce CIK cells originating from two peripheral bloodmononuclear cell types (from patients with breast cancer and healthy adults). Killing activity was detectedusing an LDH assay, immunophenotypic changes were analyzed by flow cytometry, and the IFN-γ level ofculture supernatants was detected by ELISA.Results The results showed that the proliferative capacity of the allogeneic CIK cells was significantlyhigher than that of the autologous CIK cells. Compared with autologous CIK cells, the allogeneic CIK cellshad significantly enhanced anti-tumor activity against SKBR-3 cells (P < 0.01) and IFN-γ secretion (P <0.05);moreover, they increased the ratio of CD3+ CD56+ cells and CD3+ CD8+ cells (P < 0.05).Conclusion Healthy adult-derived induced CIK cells exhibited a stronger anti-tumor effect than inducedCIK cells derived from patients with breast cancer. The results of this study could provide experimentalevidence for the clinical application of CIK cells.
基金Supported by a grant from the National Natural Science Foundation of China(No.81260392).
文摘Objective The aim of this study was to enhance the treatment effect of tumor purified autogenous heat shock protein 70-peptide complexes(HSP70-PCs)on HER-3-overexpressing breast cancer.Methods In this study,we first studied the expression of HER-3 in breast cancer tissues and its relationship with patient characteristics.We then purified HSP70-PCs from primary breast cancer cells with different HER-2 and HER-3 expression profiles and determined the cytotoxicity of autogenous dendritic cells(DCs)and CD8+T cells induced by these complexes.Third,recombinant human HSP70-HER-3 protein complexes were used to inhibit the autogenous HSP70-PCs purified from HER-3-overexpressing breast cancer cells,and the resulting immunological response was examined.Results The results show that HSP70-PCs can be combined with recombinant HSP70-HER-3 protein complexes to induce stronger immunological responses than autogenous HSP70-PCs alone and that these treatments induce autogenous CD8+T cell killing of HER-3-positive breast cancer cells.Conclusion These findings provide a new direction for HSP70-DC-based immunotherapy for patients with HER-3-overexpressing breast cancer.
基金supported by the National Key Research and Development plan,“Public Safety Risk Prevention,Control and Emergency Technical Equipment”(No.2020YFC0845000).
文摘Background:To analyze the clinical features of convalescent individuals with novel coronavirus-infected pneumonia(novel coronavirus pneumonia)at rehabilitation station in Wuhan.Methods:712 patients in the convalescence period of novel coronavirus pneumonia isolated and observed at the rehabilitation station were investigated by collecting their basic data,clinical syndrome features,and tongue manifestations.The clinical syndrome features were analyzed based on guidelines of Diagnosis and Treatment Plan for Novel Coronavirus-infected Pneumonia(National Health Commission of the People’s Republic of China,7th Trial Edition).Results:Cough(24.86%),chest tightness and shortness of breath(23.17%),and fatigue(16.57%)were the main symptoms of patients in the convalescence period of novel coronavirus pneumonia.Their tongue appearance was mostly characterized by redness(88.65%),thick coating(67.25%),greasy coating(49.78%)and white coating(76.86%).Conclusion:Compared with the ordinary/mild patients,cough and anorexia symptoms were more common in the severe/critical patients.In convalescent patients,red and fat tongue with thick greasy fur were common.
基金the National Natural Science Foundation of China(52171215)Haihe Laboratory of Sustainable Chemical Transformations,and China National Postdoctoral Program for Innovative Talents(BX2021024)。
文摘Comprehensive Summary Layered transition-metal oxides are promising cathode candidates for sodium-ion batteries.However,the inferior interphase formation and particulate fracture during sodiation/desodiation result in structure degradation and poor stability.Herein,the interface chemistry of P2-Na_(0.640)Ni_(0.343)Mn_(0.657)O_(2)in an electrolyte of 1.0 mol/L NaPF6 in diglyme is unveiled to enable highly reversible Na extraction and intercalation.The uniform and robust cathode-electrolyte interphase layer is in situ formed with decomposition of diglyme molecules and anions in initial cycles.The NaF-and CO-rich CEI film exhibits high mechanical strength and ionic conductivity,which suppresses the reconstruction of its electrode interphase from P2 phase to spinel-like structure and reinforces its structure integrity without cracks.This favours facile Na+transport and stable bulk redox reactions.It is demonstrated to show long cycling stability with capacity retention of 94.4%for 180 cycles and superior rate capability.This investigation highlights the cathode interphase chemistry in sodium-ion batteries.
基金supported by the National Natural Science Foundation of China(21777096 and 21777097)the China Postdoctoral Science Foundation(2017M621483)
文摘Highly reactive radical species play an important role in syn-thetic chemistry, industrial processes, and environmental remedi-ation applications [1,2]. The radicals can be formed by eitherthermal decomposition of highly active oxidants or by catalyticactivation of stable oxidants under mild conditions [2]. Recently,the sulfate radical (.504) with its advantages of strong oxidizingpower, selective reactivity, and stability over a broad range of pHhas emerged as an excellent and versatile oxidant for a variety ofapplication [5].
基金support of the NSFC(Grant Nos.22025505 and 21777096)Program of Shanghai Academic/-Technology Research Leader(Grant No.20XD1422200)+2 种基金Cultivating fund of Frontiers Science Center for Transformative Molecules(2019PT02)TZ acknowledges the support of the Initiative Postdocs Supporting Program(Grant No.BX20180185)China Postdoctoral Science Foundation(Grant No.2018M640387)。
文摘Low-bandgap formamidinium-cesium(FA-Cs)perovskites of FA_(1-x)CsxPbI_(3)(x<0:1)are promising candidates for efficient and robust perovskite solar cells,but their black-phase crystallization is very sensitive to annealing temperature.Unfortunately,the low heat conductivity of the glass substrate builds up a temperature gradient within from bottom to top and makes the initial annealing temperature of the perovskite film lower than the black-phase crystallization point(~150℃).Herein,we take advantage of such temperature gradient for the diffusional growth of high-quality FA-Cs perovskites by introducing a thermally unstable MA^(+)cation,which would firstly formα-phase FA-MA-Cs mixed perovskites with low formation energy at the hot bottom of the perovskite films in the early annealing stage.The natural gradient annealing temperature and the thermally unstable MA^(+)cation then lead to the bottom-to-top diffusional growth of highly orientatedα-phase FA-Cs perovskite,which exhibits 10-fold of enhanced crystallinity and reduced trap density(~3:85×10^(15) cm^(−3)).Eventually,such FA-Cs perovskite films were fabricated into stable solar cell devices with champion efficiency up to 23.11%,among the highest efficiency of MA-free perovskite solar cells.