Liver cancer,one of the most common malignancies worldwide,ranks sixth in incidence and third in mortality.Liver cancer treatment options are diverse,inclu-ding surgical resection,liver transplantation,percutaneous ab...Liver cancer,one of the most common malignancies worldwide,ranks sixth in incidence and third in mortality.Liver cancer treatment options are diverse,inclu-ding surgical resection,liver transplantation,percutaneous ablation,transarterial chemoembolization,radiotherapy,chemotherapy,targeted therapy,immuno-therapy,and traditional Chinese medicine(TCM).A multidisciplinary team(MDT)is essential to customize treatment plans based on tumor staging,liver function,and performance status(PS),ensuring individualized patient care.Treatment decisions require a MDT to tailor strategies based on tumor staging,liver function,and PS,ensuring personalized care.The approval of new first-line and second-line drugs and the establishment of standard treatments based on immune checkpoint inhibitors have significantly expanded treatment options for advanced liver cancer,improving overall prognosis.However,many patients do not respond effectively to these treatments and ultimately succumb to the disease.Modern oncology treatments,while extending patient survival,often come with severe side effects,resistance,and damage to the body,negatively impacting quality of life.Huang et al's study published at World Journal of Gastroenterology rigorously validates the anticancer properties of Calculus bovis,enhancing our understanding of TCM and contributing to new liver cancer treatment strategies.For over 5000 years,TCM has been used in East Asian countries like China to treat various diseases,including liver conditions.Analysis of real-world clinical data suggests that for patients with advanced-stage tumors lacking effective treatments,integrated TCM therapies could provide significant breakthroughs.展开更多
Cobalt-based nanomaterials have been intensively explored as one of the most promising noble-metal-free oxygen evolution reaction (OER) electrocatalysts. However, most of their performances are still inferior to state...Cobalt-based nanomaterials have been intensively explored as one of the most promising noble-metal-free oxygen evolution reaction (OER) electrocatalysts. However, most of their performances are still inferior to state-of-the-art precious metals especially for Ru and Ir.Herein, we apply a continuous ion exchange method and further hydrothermal treatment to synthesize the flake-like Ag-CoSO4 nanohybrids beginning from Co-BTC (BTC:benzene-1,3,5-tricarboxylic acid) metal-organic frameworks precursor. The catalyst exhibits superior OER performance under the alkaline electrolyte solution (a low overpotential of 282 mV at 10 mA/cm2 in 1 mol/L KOH), which is even better than RuO2 due to the improved conductivity and rapid electrons transfer process via introducing small amount of Ag. The existence of Ag in the hybrids is beneficial for increasing the Co(IV) concentration, thus promoting the *OOH intermediate formation process. Besides, due to the very low requirement of Ag content (lower than 1 atom%), the cost of the catalyst is also limited. This work provides a new insight for designing of inexpensive OER catalysts with high performance and low cost.展开更多
文摘Liver cancer,one of the most common malignancies worldwide,ranks sixth in incidence and third in mortality.Liver cancer treatment options are diverse,inclu-ding surgical resection,liver transplantation,percutaneous ablation,transarterial chemoembolization,radiotherapy,chemotherapy,targeted therapy,immuno-therapy,and traditional Chinese medicine(TCM).A multidisciplinary team(MDT)is essential to customize treatment plans based on tumor staging,liver function,and performance status(PS),ensuring individualized patient care.Treatment decisions require a MDT to tailor strategies based on tumor staging,liver function,and PS,ensuring personalized care.The approval of new first-line and second-line drugs and the establishment of standard treatments based on immune checkpoint inhibitors have significantly expanded treatment options for advanced liver cancer,improving overall prognosis.However,many patients do not respond effectively to these treatments and ultimately succumb to the disease.Modern oncology treatments,while extending patient survival,often come with severe side effects,resistance,and damage to the body,negatively impacting quality of life.Huang et al's study published at World Journal of Gastroenterology rigorously validates the anticancer properties of Calculus bovis,enhancing our understanding of TCM and contributing to new liver cancer treatment strategies.For over 5000 years,TCM has been used in East Asian countries like China to treat various diseases,including liver conditions.Analysis of real-world clinical data suggests that for patients with advanced-stage tumors lacking effective treatments,integrated TCM therapies could provide significant breakthroughs.
基金supported by the National Natural Science Foundation(No.21271163,No.1232211,No.21571168)the Fundamental Research Funds for the Central Universities(WK2060140021)the CAS/SAFEA International Partnership Program for Creative Research Teams and the Hefei Science Center CAS(2016HSC-IU011)
文摘Cobalt-based nanomaterials have been intensively explored as one of the most promising noble-metal-free oxygen evolution reaction (OER) electrocatalysts. However, most of their performances are still inferior to state-of-the-art precious metals especially for Ru and Ir.Herein, we apply a continuous ion exchange method and further hydrothermal treatment to synthesize the flake-like Ag-CoSO4 nanohybrids beginning from Co-BTC (BTC:benzene-1,3,5-tricarboxylic acid) metal-organic frameworks precursor. The catalyst exhibits superior OER performance under the alkaline electrolyte solution (a low overpotential of 282 mV at 10 mA/cm2 in 1 mol/L KOH), which is even better than RuO2 due to the improved conductivity and rapid electrons transfer process via introducing small amount of Ag. The existence of Ag in the hybrids is beneficial for increasing the Co(IV) concentration, thus promoting the *OOH intermediate formation process. Besides, due to the very low requirement of Ag content (lower than 1 atom%), the cost of the catalyst is also limited. This work provides a new insight for designing of inexpensive OER catalysts with high performance and low cost.