Rock fracturing is often accompanied by electromagnetic phenomenon.As a vector field,in addition to the intensity that is widely concerned,the generated electromagnetic field also has obvious direction-ality.To this e...Rock fracturing is often accompanied by electromagnetic phenomenon.As a vector field,in addition to the intensity that is widely concerned,the generated electromagnetic field also has obvious direction-ality.To this end,a set of electromagnetic antennas capable of simultaneous three-axis measurement is used to monitor the electromagnetic vector field generated from rock fracturing based on Brazilian tests.The signal amplitude on each axis can represent the magnitude of actual magnetic flux density component on the three axes.The intensity and directional characteristics of electromagnetic signals received at different positions are studied using vector synthesis.The directionality of electromagnetic radiation measured using a three-axis electromagnetic antenna shows that the direction of the magnetic flux intensity generated by rock fracturing tends to be parallel to the crack surface,and the measured signal intensity is greater in a direction closer to the crack surface.展开更多
In this study,we established a dynamic ejection coal burst model for a coalmine roadway subject to stress,and held that the stress concentration zone at the roadway side is the direct energy source of this ejection.Th...In this study,we established a dynamic ejection coal burst model for a coalmine roadway subject to stress,and held that the stress concentration zone at the roadway side is the direct energy source of this ejection.The formation and development of such burst undergoes three stages:(1)instability and propagation of the cracks in the stress concentration zone,(2)emerging of a layered energy storage structure in the zone,and(3)ejection of coal mass or coal burst due to instability.Moreover,we figured out the initial strength of periodic cracks is parallel to the maximal dominant stress direction in the stress concentration zone and derived from the damage strain energy within the finite area of the zone based on the Griffith energy theory.In addition,we analyzed the formation process of the layered energy storage structure in the zone,simplified it as a simply supported restraint sheet,and calculated the minimum critical load and the internally accumulated elastic energy at the instable state.Furthermore,we established a criterion for occurrence of the coal burst based on the variational principle,and analyzed the coal mass ejection due to instability and coal burst induced by different intensity disturbances.At last,with the stratum conditions of Junde Coalmine as the model prototype,we numerically simulated the load displacement distribution of the stress concentration zone ahead of the working face disturbed by the main roof-fracture-induced dynamic load during the mining process as well as their varying characteristics,and qualitatively verified the above model.展开更多
[Objectives] The study aimed to discuss the high-yield mechanism of Yugu 18.[Methods] The characteristics of sources and sinks of Yugu 18 with high quality, high yield, wide adaptability and multi-resistance to diseas...[Objectives] The study aimed to discuss the high-yield mechanism of Yugu 18.[Methods] The characteristics of sources and sinks of Yugu 18 with high quality, high yield, wide adaptability and multi-resistance to diseases were studied by using Jigu 18 as the control variety.[Results] Yugu 18 was superior in sink capability and the ability to fill sinks. In the filling period, its photosynthetic capacity was strong, and grain-leaf ratio was high. Photosynthetic products had a great contribution to grain filling after flowering, and the coordination between sources and sinks was good.[Conclusions] The research provides theoretical basis for the breeding and cultivation of high-yield foxtail millet.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.51904019)Key Scientific Research Projects Plan of Henan Higher Education Institution(Grant No.21A620001)Fundamental Research Funds for the Central Universities(Grant No.FRF-IDRY-20-006).
文摘Rock fracturing is often accompanied by electromagnetic phenomenon.As a vector field,in addition to the intensity that is widely concerned,the generated electromagnetic field also has obvious direction-ality.To this end,a set of electromagnetic antennas capable of simultaneous three-axis measurement is used to monitor the electromagnetic vector field generated from rock fracturing based on Brazilian tests.The signal amplitude on each axis can represent the magnitude of actual magnetic flux density component on the three axes.The intensity and directional characteristics of electromagnetic signals received at different positions are studied using vector synthesis.The directionality of electromagnetic radiation measured using a three-axis electromagnetic antenna shows that the direction of the magnetic flux intensity generated by rock fracturing tends to be parallel to the crack surface,and the measured signal intensity is greater in a direction closer to the crack surface.
基金supported by the Science Foundation of the National Natural Science Foundation of China(Nos.51634001and 51774023)the Fundamental Research Funds for the Central Universities of China(No.FRF-TP-18-007C1)
文摘In this study,we established a dynamic ejection coal burst model for a coalmine roadway subject to stress,and held that the stress concentration zone at the roadway side is the direct energy source of this ejection.The formation and development of such burst undergoes three stages:(1)instability and propagation of the cracks in the stress concentration zone,(2)emerging of a layered energy storage structure in the zone,and(3)ejection of coal mass or coal burst due to instability.Moreover,we figured out the initial strength of periodic cracks is parallel to the maximal dominant stress direction in the stress concentration zone and derived from the damage strain energy within the finite area of the zone based on the Griffith energy theory.In addition,we analyzed the formation process of the layered energy storage structure in the zone,simplified it as a simply supported restraint sheet,and calculated the minimum critical load and the internally accumulated elastic energy at the instable state.Furthermore,we established a criterion for occurrence of the coal burst based on the variational principle,and analyzed the coal mass ejection due to instability and coal burst induced by different intensity disturbances.At last,with the stratum conditions of Junde Coalmine as the model prototype,we numerically simulated the load displacement distribution of the stress concentration zone ahead of the working face disturbed by the main roof-fracture-induced dynamic load during the mining process as well as their varying characteristics,and qualitatively verified the above model.
基金Supported by Key Scientific and Technological Project of Anyang CitySpecial Funds for Construction of Modern Agricultural Industrial Technology System of Ministry of Agriculture/Ministry of Finance(CARS-06-13.5-B25)
文摘[Objectives] The study aimed to discuss the high-yield mechanism of Yugu 18.[Methods] The characteristics of sources and sinks of Yugu 18 with high quality, high yield, wide adaptability and multi-resistance to diseases were studied by using Jigu 18 as the control variety.[Results] Yugu 18 was superior in sink capability and the ability to fill sinks. In the filling period, its photosynthetic capacity was strong, and grain-leaf ratio was high. Photosynthetic products had a great contribution to grain filling after flowering, and the coordination between sources and sinks was good.[Conclusions] The research provides theoretical basis for the breeding and cultivation of high-yield foxtail millet.