Thalamic hemorrhage can lead to the development of central post-stroke pain.Changes in histone acetylation levels,which are regulated by histone deacetylases,affect the excitability of neurons surrounding the hemorrha...Thalamic hemorrhage can lead to the development of central post-stroke pain.Changes in histone acetylation levels,which are regulated by histone deacetylases,affect the excitability of neurons surrounding the hemorrhagic area.However,the regulato ry mechanism of histone deacetylases in central post-stroke pain remains unclea r.Here,we show that iron overload leads to an increase in histone deacetylase 2expression in damaged ventral posterolateral nucleus neurons.Inhibiting this increase restored histone H3 acetylation in the Kcna2 promoter region of the voltage-dependent potassium(Kv)channel subunit gene in a rat model of central post-stroke pain,thereby increasing Kcna2expression and relieving central pain.However,in the absence of nerve injury,increasing histone deacetylase 2 expression decreased Kcna2expression,decreased Kv current,increased the excitability of neurons in the ventral posterolateral nucleus area,and led to neuropathic pain symptoms.Moreover,treatment with the iron chelator deferiprone effectively reduced iron overload in the ventral posterolateral nucleus after intracerebral hemorrhage,reversed histone deacetylase 2 upregulation and Kv1.2 downregulation,and alleviated mechanical hypersensitivity in central post-stroke pain rats.These results suggest that histone deacetylase 2 upregulation and Kv1.2 downregulation,mediated by iron overload,are important factors in central post-stroke pain pathogenesis and co uld se rve as new to rgets for central poststroke pain treatment.展开更多
Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,th...Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,the upscaling of small-area PSCs to large-area solar modules to meet the demands of practical applications remains a significant challenge.The scalable production of high-quality perovskite films by a simple,reproducible process is crucial for resolving this issue.Furthermore,the crystallization behavior in the solution-processed fabrication of perovskite films can be strongly influenced by the physicochemical properties of the precursor inks,which are significantly affected by the employed solvents and their interactions with the solutes.Thus,a comprehensive understanding of solvent engineering for fabricating perovskite films over large areas is urgently required.In this paper,we first analyze the role of solvents in the solution-processed fabrication of large-area perovskite films based on the classical crystal nucleation and growth mechanism.Recent efforts in solvent engineering to improve the quality of perovskite films for solar modules are discussed.Finally,the basic principles and future challenges of solvent system design for scalable fabrication of high-quality perovskite films for efficient solar modules are proposed.展开更多
The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed...The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.展开更多
Pulpitis,an inflammatory disease of dental pulp tissues,ultimately results in the loss of pulp defense properties.Existing clinical modalities cannot effectively promote inflamed pulp repair.Oxidative stress is a majo...Pulpitis,an inflammatory disease of dental pulp tissues,ultimately results in the loss of pulp defense properties.Existing clinical modalities cannot effectively promote inflamed pulp repair.Oxidative stress is a major obstacle inhibiting pulp repair.Due to their powerful antioxidative capacity,mesenchymal stem cell-derived small extracellular vesicles(MSC-sEVs)exhibit potential for treating oxidative stress-related disorders.However,whether MSC-sEVs shield dental pulp tissues from oxidative damage is largely unknown.Here,we showed that dental follicle stem cell-derived sEVs(DFSC-sEVs)have antioxidative and prohealing effects on a rat LPS-induced pulpitis model by enhancing the survival,proliferation and odontogenesis of H_(2)O_(2)-injured dental pulp stem cells(DPSCs).Additionally,DFSC-sEVs restored the oxidative/antioxidative balance in DPSC mitochondria and had comparable effects on ameliorating mitochondrial dysfunction with the mitochondrion-targeted antioxidant Mito-Tempo.To improve the efficacy of DFSC-sEVs,we fabricated an intelligent and injectable hydrogel to release DFSC-sEVs by combining sodium alginate(SA)and the ROS sensor RhB-AC.The newly formed SA-RhB hydrogel efficiently encapsulates DFSC-sEVs and exhibits controlled release of DFSC-sEVs in a HClO/ClO^(-)concentration-dependent manner,providing a synergistic antioxidant effect with DFSC-sEVs.These results suggest that DFSC-sEVs-loaded SA-RhB is a promising minimally invasive treatment for pulpitis by enhancing tissue repair in the pulp wound microenvironment.展开更多
Extensive macrophage inflammatory responses and osteoclast formation are predominant during inflammatory or infective osteolysis.Mesenchymal stem cell(MSC)-derived small extracellular vesicles(MSC-sEV)have been shown ...Extensive macrophage inflammatory responses and osteoclast formation are predominant during inflammatory or infective osteolysis.Mesenchymal stem cell(MSC)-derived small extracellular vesicles(MSC-sEV)have been shown to exert therapeutic effects on bone defects.However,cultured MSCs are typically exposed to normoxia(21%O2)in vitro,which differs largely from the oxygen concentration in vivo under hypoxic conditions.It is largely unknown whether sEV derived from dental pulp stem cells(DPSCs)cultured under hypoxic conditions(Hypo-sEV)exert better therapeutic effects on lipopolysaccharide(LPS)-induced inflammatory osteolysis than those cultured under normoxic conditions(Nor-sEV)by simultaneously inhibiting the macrophage inflammatory response and osteoclastogenesis.In this study,we show that hypoxia significantly induces the release of sEV from DPSCs.Moreover,Hypo-sEV exhibit significantly improved efficacy in promoting M2 macrophage polarization and suppressing osteoclast formation to alleviate LPS-induced inflammatory calvarial bone loss compared with Nor-sEV.Mechanistically,hypoxia preconditioning markedly alters the miRNA profiles of DPSC-sEV.MiR-210-3p is enriched in Hypo-sEV,and can simultaneously induce M2 macrophage generation and inhibit osteoclastogenesis by targeting NF-κB1 p105,which attenuates osteolysis.Our study suggests a promising potential for hypoxia-induced DPSC-sEV to treat inflammatory or infective osteolysis and identifies a novel role of miR-210-3p in concurrently hindering osteoclastogenesis and macrophage inflammatory response by inhibiting NF-kB1 expression.展开更多
During the fabrication of quartz crystal resonators(QCRs),parallelism error is inevitably generated,which is rarely investigated.In order to reveal the influence of parallelism error on the working performance of QCRs...During the fabrication of quartz crystal resonators(QCRs),parallelism error is inevitably generated,which is rarely investigated.In order to reveal the influence of parallelism error on the working performance of QCRs,the coupled vibration of a non-parallel AT-cut quartz crystal plate with electrodes is systematically studied from the views of theoretical analysis and numerical simulations.The two-dimensional thermal incremental field equations are solved for the free vibration analysis via the coefficient-formed partial differential equation module of the COMSOL Multiphysics software,from which the frequency spectra,frequency–temperature curves,and mode shapes are discussed in detail.Additionally,the piezoelectric module is utilized to obtain the admittance response under different conditions.It is demonstrated that the parallelism error reduces the resonant frequency.Additionally,symmetry broken by the non-parallelism increases the probability of activity dip and is harmful to QCR’s thermal stability.However,if the top and bottom surfaces incline synchronously in the same direction,the influence of parallelism error is tiny.The conclusions achieved are helpful for the QCR design,and the methodology presented can also be applied to other wave devices.展开更多
Cas1-and-Cas2-mediated new spacer acquisition is an essential process for bacterial adaptive immunity.The process is critical for the ecology of the oral microflora and oral health.Although molecular mechanisms for sp...Cas1-and-Cas2-mediated new spacer acquisition is an essential process for bacterial adaptive immunity.The process is critical for the ecology of the oral microflora and oral health.Although molecular mechanisms for spacer acquisition are known,it has never been established if this process is associated with the morphological changes of bacteria.In this study,we demonstrated a novel Cas2-induced filamentation phenotype in E.coli that was regulated by co-expression of the Cas1 protein.A 30 amino acid motif at the carboxyl terminus of Cas2 is necessary for this function.By imaging analysis,we provided evidence to argue that Cas-induced filamentation is a step coupled with new spacer acquisition during which filaments are characterised by polyploidy with asymmetric cell division.This work may open new opportunities to investigate the adaptive immune response and microbial balance for oral health.展开更多
A novel test structure to characterize the fracture strength of MEMS(Micro-electro-Mechanical Systems)thin films is presented.The test structure is comprised of a micro fabricated chevron-shaped thermal actuator and t...A novel test structure to characterize the fracture strength of MEMS(Micro-electro-Mechanical Systems)thin films is presented.The test structure is comprised of a micro fabricated chevron-shaped thermal actuator and test specimen.The test structure is capable of producing large displacement and stresswhile keeping a relatively low temperature gradient across the test specimen.A voltage is applied across the beams of the chevron-shaped actuator,producing thermal expansion force to fracture the test specimen.Actuator deflection is computed based on elastic analysis of structures.To verify the test structure,simulations have been implemented using COMSOL Multiphysics.A 620μmlong,410μm wide,10μm thick test structure produced stress of 7.1 GPawhile the applied voltage is 5 V.The results indicate that the test structure is suitable for in-situ measurement of the fracture strength of MEMS thin films.展开更多
To date, the instability of organometal halide perovskite solar cells(PSCs) has become the focus issue that limits the development and long-term application of PSCs. Both the ultraviolet(UV) rays in sunlight and m...To date, the instability of organometal halide perovskite solar cells(PSCs) has become the focus issue that limits the development and long-term application of PSCs. Both the ultraviolet(UV) rays in sunlight and moisture in air can significantly accelerate the disintegration of the perovskite. Here, we introduced a Zn Se quantum dots layer as downshifting materials, which was spin-coated onto the backside of PSCs.This layer converted the UV rays into visible light to prevent the destruction of PSCs as well as increase the light harvesting of the perovskite layer. Under the UV irradiation in the moisture ambient(40%), the destruction speed of the unencapsulated perovskite films were also delayed evidently. In addition, the power conversion efficiency(PCE) of the PSCs was increased from 16.6% to 17.3% due to the increase of the visible light absorbance of the perovskite.展开更多
Lithium metal batteries(LMBs)are considered to be one of the most promising high-energy-density battery systems.However,their practical application in carbonate electrolytes is hampered by lithium dendrite growth,resu...Lithium metal batteries(LMBs)are considered to be one of the most promising high-energy-density battery systems.However,their practical application in carbonate electrolytes is hampered by lithium dendrite growth,resulting in short cycle life.Herein,an electrolyte regulation strategy is developed to improve the cyclability of LMBs in carbonate electrolytes by introducing LiNO3 using trimethyl phosphate with a slightly higher donor number compared to NO_(3)^(-)as a solubilizer.This not only allows the formaion of Li^(+)-coordinated NO3 but also achieves the regulation of electrolyte solvation structures,leading to the formation of robust and ion-conductive solid-electrolyte interphase films with inorganic-rich inner and organic-rich outer layers on the Li metal anodes.As a result,high Coulombic efficiency of 99.1%and stable plating/stripping cycling of Li metal anode in LilCu cells were realized.Furthermore,excellent performance was also demonstrated in Li||LiNi_(0.83)Co_(0.11)Mn_(0.06)O_(2)(NCM83)full cells and Cul/NCM83 anodefree cells using high mass-loading cathodes.This work provides a simple interphase engineering strategy through regulating the electrolyte solvation structures for high-energy-density LMBs.展开更多
Unlike general education,vocational education aims to nurture skilled people for various sectors in the society.The development of students’problem analysis and problem-solving skills is crucial.As an important part ...Unlike general education,vocational education aims to nurture skilled people for various sectors in the society.The development of students’problem analysis and problem-solving skills is crucial.As an important part of the vocational education system,skills competitions are considered a“booster”for improving the quality of teaching in vocational institutions.This paper examines the problem-solving skills of students in preparation for skills competition.First of all,we introduce China’s education policies and conduct a review of early scholars’views,followed by a discussion on the specific problems faced in the design of the entry for skills competition and an exploration of the process of enhancing students’problem-solving skills around these problems;we then propose several suggestions for vocational institutions to enhance their participation in skills competitions.Skills competitions provide a“special stage”for students in vocational institutions to show their abilities.The question of how this“stage”can be utilized to better improve students’abilities is worth exploring in different fields.展开更多
Multiple hetero-interfaces would strengthen interfacial polarization and boost electromagnetic wave absorption,but still remain the formidable challenges in decreasing filler loadings.Herein,sandwich NC@Co/NC@MnO_(2)c...Multiple hetero-interfaces would strengthen interfacial polarization and boost electromagnetic wave absorption,but still remain the formidable challenges in decreasing filler loadings.Herein,sandwich NC@Co/NC@MnO_(2)composites with hollow cavity,multiple hetero-interfaces,and hierarchical structures have been fabricated via the cooperative processes of self-sacrifice strategy and sequential hydrothermal reaction.In the sandwich composites,middle magnetic components(Co/NC)are wrapped by inner N-doped carbon(NC)matrix and outer hierarchical MnO_(2)nanosheets.Importantly,hollow engineering of sandwich composites with multiple hetero-interfaces greatly facilitates the enhancement of absorption bandwidth without sacrificing the absorption intensity.The maximum reflection loss of sandwich NC@Co/NC@MnO_(2)composites reaches-44.8 dB at 2.5 mm and the effective bandwidths is achieved as wide as 9.6 GHz at 2.3 mm.These results provide us a new insight into preparing efficient electromagnetic wave absorbers by interface engineering and hollow construction.展开更多
Identifying biomarkers for predicting radiotherapy efficacy is crucial for optimizing personalized treatments.We previously reported that rs1553867776 in the miR-4274 seed region can predict survival in patients with ...Identifying biomarkers for predicting radiotherapy efficacy is crucial for optimizing personalized treatments.We previously reported that rs1553867776 in the miR-4274 seed region can predict survival in patients with rectal cancer receiving postoperative chemoradiation therapy.Hence,to investigate the molecular mechanism of the genetic variation and its impact on the radiosensitivity of colorectal cancer(CRC),in this study,bioinformatics analysis is combined with functional experiments to confirm peroxisomal biogenesis factor 5(PEX5)as a direct target of miR-4274.The miR-4274 rs1553867776 variant influences the binding of miR-4274 and PEX5 mRNA,which subsequently regulates PEX5 protein expression.The interaction between PEX5 and Ku70 was verified by co-immunoprecipitation and immunofluorescence.A xenograft tumor model was established to validate the effects of miR-4274 and PEX5 on CRC progression and radiosensitivity in vivo.The overexpression of PEX5 enhances radiosensitivity by preventing Ku70 from entering the nucleus and reducing the repair of ionizing radiation(IR)-induced DNA damage by the Ku70/Ku80 complex in the nucleus.In addition,the enhanced expression of PEX5 is associated with increased IR-induced ferroptosis.Thus,targeting this mechanism might effectively increase the radiosensitivity of CRC.These findings offer novel insights into the mechanism of cancer radioresistance and have important implications for clinical radiotherapy.展开更多
Introduction:Highmercury(Hg)concentrations affect the chlorophyll in leaves,therebymodifying leaf spectra.Hyperspectra is a promising technique for the rapid,nondestructive evaluation of leaf Hg content.In this study,...Introduction:Highmercury(Hg)concentrations affect the chlorophyll in leaves,therebymodifying leaf spectra.Hyperspectra is a promising technique for the rapid,nondestructive evaluation of leaf Hg content.In this study,we investigated Hg contents and reflective hyperspectra of reed leaves(Phragmites communis)in a gold mining(Jilin province,China).Spectral parameters sensitive to Hg content were identified through basic spectral transformations,continuous wavelet transformation(CWT),and spectral indices techniques.Leaf Hg inversion models were developed using stepwise multiple linear regression,partial least squares regression,and random forest algorithms.Outcomes:The results indicated that:1)leaf Hg content decreased with increasing distance from the mine:Jiapigou(JPG)>Erdaocha(EDC)>Laojingchang(LJC)>Erdaogou(EDG)>Lingqian(LQ)>Weishahe(WSH).2)Hg–sensitive wavelengths were primarily in the visible region;CWT increased the correlation between hyperspectral data and leaf Hg content,and improved the regression and accuracy of inversion;3)the continuumremoval–CWT–stepwise multiple linear regression was better for estimating low leaf Hg content;while the differential spectral index–partial least squares regression was better for estimating high leaf Hg content.Conclusion:These hyperspectral inversion methods could be used for rapid,nondestructive monitoring of wetland plants.展开更多
Mn-based layered transition metal oxides are promising cathode materials for sodium-ion batteries(SIBs)because of their high theoretical capacities,abundant raw materials,and environment-friendly advantages.However,th...Mn-based layered transition metal oxides are promising cathode materials for sodium-ion batteries(SIBs)because of their high theoretical capacities,abundant raw materials,and environment-friendly advantages.However,they often show insufficient performance due to intrinsic issues including poor structural stability and dissolution of Mn^(3+).Atomic doping is an effective way to address these structural degradation issues.Herein,we reported a new synthesis strategy of a Cu-doped layered cathode by directly calcinating a pure metal-organic framework.Benefiting from the unique structure of MOF with atomic-level Cu doping,a homogeneous Cu-doped layered compound P2-Na_(0.674)Cu_(0.01)Mn_(0.99)O_(2) was obtained.The Cu substitution promotes the crystal structural stability and suppresses the dissolution of Mn,thus preventing the structure degradation of the layered cathode materials.A remarkably enhanced cyclability is realized for the Cu-doped cathode compared with that without Cu doping,with 83.8%capacity retention after 300 cycles at 100 mA·g^(-1).Our findings provide new insights into the design of atomic-level doping layered cathode materials constructed by MOFs for high-performance SIBs.展开更多
Since approximate a century ago, many hybrid crops have been continually developed by crossing two inbred varieties. Owing to heterosis(hybrid vigor) in plants, these hybrids often have superior agricultural performan...Since approximate a century ago, many hybrid crops have been continually developed by crossing two inbred varieties. Owing to heterosis(hybrid vigor) in plants, these hybrids often have superior agricultural performances in yield or disease resistance succeeding their inbred parental lines. Several classical hypotheses have been proposed to explain the genetic causes of heterosis. During recent years, many new genetics and genomics strategies have been developed and used for the identifications of heterotic genes in plants. Heterotic effects of the heterotic loci and molecular functions of the heterotic genes are being investigated in many plants such as rice, maize, sorghum, Arabidopsis and tomato.More and more data and knowledge coming from the molecular studies of heterotic loci and genes will serve as a valuable resource for hybrid breeding by molecular design in future. This review aims to address recent advances in our understanding of the genetic and molecular mechanisms of heterosis in plants. The remaining scientific questions on the molecular basis of heterosis and the potential applications in breeding are also proposed and discussed.展开更多
基金supported by the National Natural Science Foundation of China,Nos.U2004106 (to WY),81971061 (to JC)the Key Scientific Research Project of Colleges and Universities in Henan Province,No.21A320039 (to WY)。
文摘Thalamic hemorrhage can lead to the development of central post-stroke pain.Changes in histone acetylation levels,which are regulated by histone deacetylases,affect the excitability of neurons surrounding the hemorrhagic area.However,the regulato ry mechanism of histone deacetylases in central post-stroke pain remains unclea r.Here,we show that iron overload leads to an increase in histone deacetylase 2expression in damaged ventral posterolateral nucleus neurons.Inhibiting this increase restored histone H3 acetylation in the Kcna2 promoter region of the voltage-dependent potassium(Kv)channel subunit gene in a rat model of central post-stroke pain,thereby increasing Kcna2expression and relieving central pain.However,in the absence of nerve injury,increasing histone deacetylase 2 expression decreased Kcna2expression,decreased Kv current,increased the excitability of neurons in the ventral posterolateral nucleus area,and led to neuropathic pain symptoms.Moreover,treatment with the iron chelator deferiprone effectively reduced iron overload in the ventral posterolateral nucleus after intracerebral hemorrhage,reversed histone deacetylase 2 upregulation and Kv1.2 downregulation,and alleviated mechanical hypersensitivity in central post-stroke pain rats.These results suggest that histone deacetylase 2 upregulation and Kv1.2 downregulation,mediated by iron overload,are important factors in central post-stroke pain pathogenesis and co uld se rve as new to rgets for central poststroke pain treatment.
基金financially supported by the National Key Research and Development Project funding from the Ministry of Science and Technology of China(2021YFB3800104)the National Natural Science Foundation of China(51822203,52002140,U20A20252,51861145404,62105293,62205187)+4 种基金the Young Elite Scientists Sponsorship Program by CAST,the Self-determined and Innovative Research Funds of HUST(2020KFYXJJS008)the Natural Science Foundation of Hubei Province(ZRJQ2022000408)the Shenzhen Science and Technology Innovation Committee(JCYJ20180507182257563)Fundamental Research Program of Shanxi Province(202103021223032)the Innovation Project of Optics Valley Laboratory of China(OVL2021BG008)。
文摘Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,the upscaling of small-area PSCs to large-area solar modules to meet the demands of practical applications remains a significant challenge.The scalable production of high-quality perovskite films by a simple,reproducible process is crucial for resolving this issue.Furthermore,the crystallization behavior in the solution-processed fabrication of perovskite films can be strongly influenced by the physicochemical properties of the precursor inks,which are significantly affected by the employed solvents and their interactions with the solutes.Thus,a comprehensive understanding of solvent engineering for fabricating perovskite films over large areas is urgently required.In this paper,we first analyze the role of solvents in the solution-processed fabrication of large-area perovskite films based on the classical crystal nucleation and growth mechanism.Recent efforts in solvent engineering to improve the quality of perovskite films for solar modules are discussed.Finally,the basic principles and future challenges of solvent system design for scalable fabrication of high-quality perovskite films for efficient solar modules are proposed.
基金supported by the National Natural Science Foundation of China,Nos.91849115 and U1904207(to YX),81974211 and 82171247(to CS)Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences,No.2020-PT310-01(to YX).
文摘The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.
基金supported by the National Natural Science Foundation of China(No.82370943,82201037 and 81970925)the Young Elite Scientists Sponsorship Program by Guangzhou(QT-2023-030)Fundamental Research Funds for the Central Universities,Sun Yat-sen University(23qnpy157).
文摘Pulpitis,an inflammatory disease of dental pulp tissues,ultimately results in the loss of pulp defense properties.Existing clinical modalities cannot effectively promote inflamed pulp repair.Oxidative stress is a major obstacle inhibiting pulp repair.Due to their powerful antioxidative capacity,mesenchymal stem cell-derived small extracellular vesicles(MSC-sEVs)exhibit potential for treating oxidative stress-related disorders.However,whether MSC-sEVs shield dental pulp tissues from oxidative damage is largely unknown.Here,we showed that dental follicle stem cell-derived sEVs(DFSC-sEVs)have antioxidative and prohealing effects on a rat LPS-induced pulpitis model by enhancing the survival,proliferation and odontogenesis of H_(2)O_(2)-injured dental pulp stem cells(DPSCs).Additionally,DFSC-sEVs restored the oxidative/antioxidative balance in DPSC mitochondria and had comparable effects on ameliorating mitochondrial dysfunction with the mitochondrion-targeted antioxidant Mito-Tempo.To improve the efficacy of DFSC-sEVs,we fabricated an intelligent and injectable hydrogel to release DFSC-sEVs by combining sodium alginate(SA)and the ROS sensor RhB-AC.The newly formed SA-RhB hydrogel efficiently encapsulates DFSC-sEVs and exhibits controlled release of DFSC-sEVs in a HClO/ClO^(-)concentration-dependent manner,providing a synergistic antioxidant effect with DFSC-sEVs.These results suggest that DFSC-sEVs-loaded SA-RhB is a promising minimally invasive treatment for pulpitis by enhancing tissue repair in the pulp wound microenvironment.
基金This work was supported by National Natural Science Foundation of China(No.81870750,81970925,81900994)the Guangdong Financial Fund for High-Caliber Hospital Construction(174-2018-XMZC-0001-03-0125/D-08).
文摘Extensive macrophage inflammatory responses and osteoclast formation are predominant during inflammatory or infective osteolysis.Mesenchymal stem cell(MSC)-derived small extracellular vesicles(MSC-sEV)have been shown to exert therapeutic effects on bone defects.However,cultured MSCs are typically exposed to normoxia(21%O2)in vitro,which differs largely from the oxygen concentration in vivo under hypoxic conditions.It is largely unknown whether sEV derived from dental pulp stem cells(DPSCs)cultured under hypoxic conditions(Hypo-sEV)exert better therapeutic effects on lipopolysaccharide(LPS)-induced inflammatory osteolysis than those cultured under normoxic conditions(Nor-sEV)by simultaneously inhibiting the macrophage inflammatory response and osteoclastogenesis.In this study,we show that hypoxia significantly induces the release of sEV from DPSCs.Moreover,Hypo-sEV exhibit significantly improved efficacy in promoting M2 macrophage polarization and suppressing osteoclast formation to alleviate LPS-induced inflammatory calvarial bone loss compared with Nor-sEV.Mechanistically,hypoxia preconditioning markedly alters the miRNA profiles of DPSC-sEV.MiR-210-3p is enriched in Hypo-sEV,and can simultaneously induce M2 macrophage generation and inhibit osteoclastogenesis by targeting NF-κB1 p105,which attenuates osteolysis.Our study suggests a promising potential for hypoxia-induced DPSC-sEV to treat inflammatory or infective osteolysis and identifies a novel role of miR-210-3p in concurrently hindering osteoclastogenesis and macrophage inflammatory response by inhibiting NF-kB1 expression.
基金supported by the National Natural Science Foundation of China(12061131013,11972276,12172171 and 12102183)the Fundamental Research Funds for the Central Universities(NE2020002 andNS2022011)+5 种基金JiangsuHigh-Level Innovative and Entrepreneurial Talents Introduction Plan(Shuangchuang Doctor Program,JSSCBS20210166)the National Natural Science Foundation of Jiangsu Province(BK20211176)the State Key Laboratory of Mechanics and Control of Mechanical Structures at NUAA(No.MCMS-I-0522G01)Local Science andTechnologyDevelopment Fund ProjectsGuided by the CentralGovernment(2021Szvup061)the Opening Projects from the Key Laboratory of Impact and Safety Engineering of Ningbo University(CJ202104)a project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘During the fabrication of quartz crystal resonators(QCRs),parallelism error is inevitably generated,which is rarely investigated.In order to reveal the influence of parallelism error on the working performance of QCRs,the coupled vibration of a non-parallel AT-cut quartz crystal plate with electrodes is systematically studied from the views of theoretical analysis and numerical simulations.The two-dimensional thermal incremental field equations are solved for the free vibration analysis via the coefficient-formed partial differential equation module of the COMSOL Multiphysics software,from which the frequency spectra,frequency–temperature curves,and mode shapes are discussed in detail.Additionally,the piezoelectric module is utilized to obtain the admittance response under different conditions.It is demonstrated that the parallelism error reduces the resonant frequency.Additionally,symmetry broken by the non-parallelism increases the probability of activity dip and is harmful to QCR’s thermal stability.However,if the top and bottom surfaces incline synchronously in the same direction,the influence of parallelism error is tiny.The conclusions achieved are helpful for the QCR design,and the methodology presented can also be applied to other wave devices.
基金supported by the National Science and Technology Major Project(2014ZX09101046-004)the National Natural Foundation of China(31600644)
文摘Cas1-and-Cas2-mediated new spacer acquisition is an essential process for bacterial adaptive immunity.The process is critical for the ecology of the oral microflora and oral health.Although molecular mechanisms for spacer acquisition are known,it has never been established if this process is associated with the morphological changes of bacteria.In this study,we demonstrated a novel Cas2-induced filamentation phenotype in E.coli that was regulated by co-expression of the Cas1 protein.A 30 amino acid motif at the carboxyl terminus of Cas2 is necessary for this function.By imaging analysis,we provided evidence to argue that Cas-induced filamentation is a step coupled with new spacer acquisition during which filaments are characterised by polyploidy with asymmetric cell division.This work may open new opportunities to investigate the adaptive immune response and microbial balance for oral health.
基金supported by the National High Technology Program of P. R. China under Grant No. 2015AA042604
文摘A novel test structure to characterize the fracture strength of MEMS(Micro-electro-Mechanical Systems)thin films is presented.The test structure is comprised of a micro fabricated chevron-shaped thermal actuator and test specimen.The test structure is capable of producing large displacement and stresswhile keeping a relatively low temperature gradient across the test specimen.A voltage is applied across the beams of the chevron-shaped actuator,producing thermal expansion force to fracture the test specimen.Actuator deflection is computed based on elastic analysis of structures.To verify the test structure,simulations have been implemented using COMSOL Multiphysics.A 620μmlong,410μm wide,10μm thick test structure produced stress of 7.1 GPawhile the applied voltage is 5 V.The results indicate that the test structure is suitable for in-situ measurement of the fracture strength of MEMS thin films.
基金supported by the National Science Foundation of China (51774034, 51772026, 51611130063)the Fundamental Research Funds for the Central Universities (FRF-BD-16-012A)111 Project (No. B17003)
文摘To date, the instability of organometal halide perovskite solar cells(PSCs) has become the focus issue that limits the development and long-term application of PSCs. Both the ultraviolet(UV) rays in sunlight and moisture in air can significantly accelerate the disintegration of the perovskite. Here, we introduced a Zn Se quantum dots layer as downshifting materials, which was spin-coated onto the backside of PSCs.This layer converted the UV rays into visible light to prevent the destruction of PSCs as well as increase the light harvesting of the perovskite layer. Under the UV irradiation in the moisture ambient(40%), the destruction speed of the unencapsulated perovskite films were also delayed evidently. In addition, the power conversion efficiency(PCE) of the PSCs was increased from 16.6% to 17.3% due to the increase of the visible light absorbance of the perovskite.
基金supported by the National Key Research and Development Program of China(No.2019YFE0118800).
文摘Lithium metal batteries(LMBs)are considered to be one of the most promising high-energy-density battery systems.However,their practical application in carbonate electrolytes is hampered by lithium dendrite growth,resulting in short cycle life.Herein,an electrolyte regulation strategy is developed to improve the cyclability of LMBs in carbonate electrolytes by introducing LiNO3 using trimethyl phosphate with a slightly higher donor number compared to NO_(3)^(-)as a solubilizer.This not only allows the formaion of Li^(+)-coordinated NO3 but also achieves the regulation of electrolyte solvation structures,leading to the formation of robust and ion-conductive solid-electrolyte interphase films with inorganic-rich inner and organic-rich outer layers on the Li metal anodes.As a result,high Coulombic efficiency of 99.1%and stable plating/stripping cycling of Li metal anode in LilCu cells were realized.Furthermore,excellent performance was also demonstrated in Li||LiNi_(0.83)Co_(0.11)Mn_(0.06)O_(2)(NCM83)full cells and Cul/NCM83 anodefree cells using high mass-loading cathodes.This work provides a simple interphase engineering strategy through regulating the electrolyte solvation structures for high-energy-density LMBs.
基金the project of China Vocational Education Association(Project Number:ZJS2022YB024)the project of Innovation and Development Center of Ideological and Political Work(Beijing Polytechnic),Ministry of Education(Project Number:2022X305-SXZC).
文摘Unlike general education,vocational education aims to nurture skilled people for various sectors in the society.The development of students’problem analysis and problem-solving skills is crucial.As an important part of the vocational education system,skills competitions are considered a“booster”for improving the quality of teaching in vocational institutions.This paper examines the problem-solving skills of students in preparation for skills competition.First of all,we introduce China’s education policies and conduct a review of early scholars’views,followed by a discussion on the specific problems faced in the design of the entry for skills competition and an exploration of the process of enhancing students’problem-solving skills around these problems;we then propose several suggestions for vocational institutions to enhance their participation in skills competitions.Skills competitions provide a“special stage”for students in vocational institutions to show their abilities.The question of how this“stage”can be utilized to better improve students’abilities is worth exploring in different fields.
基金support from the National Natural Science Foundation of China(No.U21A2093)Natural Science Foundation of Shaanxi Province(No.2022JM-260)Fundamental Research Funds for the Central Universities(No.G2022KY05109).This work is also financially supported by the Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.We would like to thank Zhang San from Shiyanjia Lab(www.shiyanjia.com)for the VSM analysis.
文摘Multiple hetero-interfaces would strengthen interfacial polarization and boost electromagnetic wave absorption,but still remain the formidable challenges in decreasing filler loadings.Herein,sandwich NC@Co/NC@MnO_(2)composites with hollow cavity,multiple hetero-interfaces,and hierarchical structures have been fabricated via the cooperative processes of self-sacrifice strategy and sequential hydrothermal reaction.In the sandwich composites,middle magnetic components(Co/NC)are wrapped by inner N-doped carbon(NC)matrix and outer hierarchical MnO_(2)nanosheets.Importantly,hollow engineering of sandwich composites with multiple hetero-interfaces greatly facilitates the enhancement of absorption bandwidth without sacrificing the absorption intensity.The maximum reflection loss of sandwich NC@Co/NC@MnO_(2)composites reaches-44.8 dB at 2.5 mm and the effective bandwidths is achieved as wide as 9.6 GHz at 2.3 mm.These results provide us a new insight into preparing efficient electromagnetic wave absorbers by interface engineering and hollow construction.
基金supported by grants from the National Natural Science Foundation(Grant No.81972859 to W.T.)CAMS Innovation Fund for Medical Sciences(CIFMS)(Grant No.2021-I2M-1-013 to D.L.and W.T.)State Key Laboratory of Molecular Oncology Grants(Grant No.SKLMO-2021-03 to W.T.and SKLMO-KF-2023-03 to D.L.)。
文摘Identifying biomarkers for predicting radiotherapy efficacy is crucial for optimizing personalized treatments.We previously reported that rs1553867776 in the miR-4274 seed region can predict survival in patients with rectal cancer receiving postoperative chemoradiation therapy.Hence,to investigate the molecular mechanism of the genetic variation and its impact on the radiosensitivity of colorectal cancer(CRC),in this study,bioinformatics analysis is combined with functional experiments to confirm peroxisomal biogenesis factor 5(PEX5)as a direct target of miR-4274.The miR-4274 rs1553867776 variant influences the binding of miR-4274 and PEX5 mRNA,which subsequently regulates PEX5 protein expression.The interaction between PEX5 and Ku70 was verified by co-immunoprecipitation and immunofluorescence.A xenograft tumor model was established to validate the effects of miR-4274 and PEX5 on CRC progression and radiosensitivity in vivo.The overexpression of PEX5 enhances radiosensitivity by preventing Ku70 from entering the nucleus and reducing the repair of ionizing radiation(IR)-induced DNA damage by the Ku70/Ku80 complex in the nucleus.In addition,the enhanced expression of PEX5 is associated with increased IR-induced ferroptosis.Thus,targeting this mechanism might effectively increase the radiosensitivity of CRC.These findings offer novel insights into the mechanism of cancer radioresistance and have important implications for clinical radiotherapy.
基金This work was supported by the Fundamental Research Funds of Central-level Nonprofit Research Institutes of China[CAFINT2014K05].
文摘Introduction:Highmercury(Hg)concentrations affect the chlorophyll in leaves,therebymodifying leaf spectra.Hyperspectra is a promising technique for the rapid,nondestructive evaluation of leaf Hg content.In this study,we investigated Hg contents and reflective hyperspectra of reed leaves(Phragmites communis)in a gold mining(Jilin province,China).Spectral parameters sensitive to Hg content were identified through basic spectral transformations,continuous wavelet transformation(CWT),and spectral indices techniques.Leaf Hg inversion models were developed using stepwise multiple linear regression,partial least squares regression,and random forest algorithms.Outcomes:The results indicated that:1)leaf Hg content decreased with increasing distance from the mine:Jiapigou(JPG)>Erdaocha(EDC)>Laojingchang(LJC)>Erdaogou(EDG)>Lingqian(LQ)>Weishahe(WSH).2)Hg–sensitive wavelengths were primarily in the visible region;CWT increased the correlation between hyperspectral data and leaf Hg content,and improved the regression and accuracy of inversion;3)the continuumremoval–CWT–stepwise multiple linear regression was better for estimating low leaf Hg content;while the differential spectral index–partial least squares regression was better for estimating high leaf Hg content.Conclusion:These hyperspectral inversion methods could be used for rapid,nondestructive monitoring of wetland plants.
基金This work was supported by the National Key Research and Development Program of China(2019YFE0118800).
文摘Mn-based layered transition metal oxides are promising cathode materials for sodium-ion batteries(SIBs)because of their high theoretical capacities,abundant raw materials,and environment-friendly advantages.However,they often show insufficient performance due to intrinsic issues including poor structural stability and dissolution of Mn^(3+).Atomic doping is an effective way to address these structural degradation issues.Herein,we reported a new synthesis strategy of a Cu-doped layered cathode by directly calcinating a pure metal-organic framework.Benefiting from the unique structure of MOF with atomic-level Cu doping,a homogeneous Cu-doped layered compound P2-Na_(0.674)Cu_(0.01)Mn_(0.99)O_(2) was obtained.The Cu substitution promotes the crystal structural stability and suppresses the dissolution of Mn,thus preventing the structure degradation of the layered cathode materials.A remarkably enhanced cyclability is realized for the Cu-doped cathode compared with that without Cu doping,with 83.8%capacity retention after 300 cycles at 100 mA·g^(-1).Our findings provide new insights into the design of atomic-level doping layered cathode materials constructed by MOFs for high-performance SIBs.
基金the National Key Research and Development Program of China(2016YFD0100902)the National Natural Science Foundation of China(31825015)+3 种基金Innovation Program of Shanghai Municipal Education Commission(2017-01-07-00-02-E00039)Program of Shanghai Academic Research Leader(18XD1402900)Shanghai Engineering Research Center of Plant Germplasm Resources(17DZ2252700)Science and Technology Commission of Shanghai Municipality(18DZ2260500)for supporting our research。
文摘Since approximate a century ago, many hybrid crops have been continually developed by crossing two inbred varieties. Owing to heterosis(hybrid vigor) in plants, these hybrids often have superior agricultural performances in yield or disease resistance succeeding their inbred parental lines. Several classical hypotheses have been proposed to explain the genetic causes of heterosis. During recent years, many new genetics and genomics strategies have been developed and used for the identifications of heterotic genes in plants. Heterotic effects of the heterotic loci and molecular functions of the heterotic genes are being investigated in many plants such as rice, maize, sorghum, Arabidopsis and tomato.More and more data and knowledge coming from the molecular studies of heterotic loci and genes will serve as a valuable resource for hybrid breeding by molecular design in future. This review aims to address recent advances in our understanding of the genetic and molecular mechanisms of heterosis in plants. The remaining scientific questions on the molecular basis of heterosis and the potential applications in breeding are also proposed and discussed.