期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Environmental,economic and exergy analysis of separation of ternary azeotrope by variable pressure extractive distillation based on multi-objective optimization
1
作者 Peizhe Cui Jiafu Xing +5 位作者 Chen Li mengjin zhou Jifu Zhang Yasen Dai Limei Zhong Yinglong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期145-157,共13页
In this work,the ternary azeotrope of tert-butyl alcohol/ethyl acetate/water is separated by extractive distillation(ED)to recover the available constituents and protect the environment.Based on the conductor like shi... In this work,the ternary azeotrope of tert-butyl alcohol/ethyl acetate/water is separated by extractive distillation(ED)to recover the available constituents and protect the environment.Based on the conductor like shielding model and relative volatility method,ethylene glycol was selected as the extractant in the separation process.In addition,in view of the characteristic that the relative volatility between components changes with pressure,the multi-objective optimization method based on nondominated sorting genetic algorithm II optimizes the pressure and the amount of solvent cooperatively to avoid falling into the optimal local solution.Based on the optimal process parameters,the proposed heat-integrated process can reduce the gas emissions by 29.30%.The heat-integrated ED,further coupled with the pervaporation process,can reduce gas emission by 42.36%and has the highest exergy efficiency of 47.56%.In addition,based on the heat-integrated process,the proposed two heat pump assisted heat-integrated ED processes show good economic and environmental performance.The double heat pump assisted heat-integrated ED can reduce the total annual cost by 28.78%and the gas emissions by 55.83%compared with the basis process,which has a good application prospect.This work provides a feasible approach for the separation of ternary azeotropes. 展开更多
关键词 Extractive distillation Optimization MIXTURES SEPARATION
下载PDF
Separation of fuel additives based on mechanism analysis and thermodynamic phase behavior
2
作者 mengjin zhou Yanli Zhang +5 位作者 Ke Xue Haixia Li Zhaoyou Zhu Peizhe Cui Yinglong Wang Jingwei Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期168-176,共9页
tert-butanol and ethyl acetate,as fuel additives and oxygenated fuels,can improve fuels quality and reduce exhaust emissions.Therefore,the recovery of these compounds from azeotropic systems is of great significance.I... tert-butanol and ethyl acetate,as fuel additives and oxygenated fuels,can improve fuels quality and reduce exhaust emissions.Therefore,the recovery of these compounds from azeotropic systems is of great significance.Ionic liquids(ILs)are promising green solvents for separating azeotropic systems.In this study,an efficient extraction strategy based on 1-butyl-3-methylimidazolium acetate([Bmim][AC])is proposed.The mechanism by which ILs enable the separation of binary alcohol-ester azeotropes was revealed by evaluating the lowest conformational energy through combining an independent gradient model based on the Hirshfeld partition(IGMH)and frontier molecular orbitals,to preliminarily screen the extractants.The range of extractants was further reduced by a vapor–liquid phase equilibrium(VLE)experiment,and a modeling method for separating the alcohol–ester system and recovering the solvent using[Bmim][AC]and 1-ethyl-3-methyl-3-imidazolium acetate([Emim][AC])is established.Under the optimal operating conditions,the use of[Bmim][AC]can reduce the total annual cost(TAC)per year by 17.78%,and the emissions of CO_(2),SO_(2),and NO can be reduced by 10.86%.In this study,a comprehensive method for screening extractants is proposed,and the simulation process is optimized in combination with the economic and environmental impact.The results have important guiding significance for realizing efficient,energy-saving,and green azeotropic separation systems in industry. 展开更多
关键词 Ionic liquids Extraction separation Quantum chemistry calculation AZEOTROPE Molecular simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部