Designing flexible free-standing air-electrode with efficient OER/ORR performance is of vital importance for the application of Zinc-air batteries in flexible electronics.Herein,a flexible free-standing electrode(Ni/F...Designing flexible free-standing air-electrode with efficient OER/ORR performance is of vital importance for the application of Zinc-air batteries in flexible electronics.Herein,a flexible free-standing electrode(Ni/Fe-NC/NCF/CC)is synthesized by in-situ coupling of binary Ni/Fe-NC nanocubes and N-doped carbon nanofibers(NCF)rooted on carbon cloth.The highly dispersed binary Ni/Fe-NC sites ensure excellent ORR activity and create efficient OER active sites relative to Ni-NC and Fe-NC.The in-situ coupling of Ni/Fe-NC and NCF constructs a 3D interconnected network structure that not only provides abundant and stabilized reactive sites but also guarantees fast electron transfer and gas transportation,thus achieving efficient and fast operation of ORR/OER.Therefore,Ni/Fe-NC/NCF/CC displays a much positive potential(0.952 V)at 4.0 mA cm^(-2)for ORR and a low OER overpotential(310 mV)at 50 mA cm^(-2).The Zinc-air battery with Ni/Fe-NC/NCF/CC air-electrode exhibits excellent battery performance with outstanding discharge/charge durability for 2150 cycles.The flexible Zn-air batteries with foldable mechanical properties display a high power density of 105.0 mW cm^(-2).This work widened the way to prepare flexible bifunctional air-electrode by designing composition/structure and in-situ coupling.展开更多
Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u...Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.展开更多
Objective The aim of the study was to study the correlation between the clinicopathological parameters of lung adenocarcinoma and lymph node metastasis and identify the risk factors of lymph node metastasis.Methods Th...Objective The aim of the study was to study the correlation between the clinicopathological parameters of lung adenocarcinoma and lymph node metastasis and identify the risk factors of lymph node metastasis.Methods The data of 258 patients with postoperative lung adenocarcinoma(mainly based on their pathological data)were collected and analyzed,and their basic information was counted.Results Maximum tumor diameter was found to be an independent risk factor for lymph node metastasis.The larger the maximum diameter of the tumor in patients with lung adenocarcinoma,the higher the likelihood of lymph node metastasis.Solid predominant adenocarcinoma with mucin production is as an independent risk factor for superior mediastinal and subcarinal lymph node metastasis.Primary adenocarcinomas in the lower lobe of the lung may have a higher rate of lymph node metastasis than those in the upper lobe.Conclusion The known pathological subtypes of lung adenocarcinoma can be used for the prediction of lymph node metastasis in various regions and guide the dissection of lymph nodes that would improve patients’prognosis.展开更多
The monkeypox virus(MPXV)outbreak,declared a Public Health Emergency of International Concern(PHEIC)by the World Health Organization(WHO)in 2022,continues to pose a significant threat due to the absence of vaccines or...The monkeypox virus(MPXV)outbreak,declared a Public Health Emergency of International Concern(PHEIC)by the World Health Organization(WHO)in 2022,continues to pose a significant threat due to the absence of vaccines or drugs for MPXV infection.In this study,we developed an mRNA vaccine that expressing the A29L antigen,a specific protein of the intracellular mature virus.Our vaccine utilizes a thermostable ionizable lipid nanoparticle(iLNP)platform and has been administered to mice.Our find-ings demonstrate that the MPXV A29L mRNA vaccine candidate induces robust cross-neutralizing immune responses against both vaccinia virus(VACV)and MPXV live virus.Furthermore,immunization with the vaccine candidate provided protection against the VACV challenge in mice.These findings underscore the potential of mRNA-LNP vaccines as safe and effective candidates against monkeypox epidemics.Given the current absence of specific interventions for MPXV infection,our study represents a significant step forward in developing a viable solution to combat this ongoing public health threat.展开更多
In order to study the roles of members of HKT gene fanfily in wheat, TaHKT2 ; 2 was isolated by using homologous cloning strategy and screening genomic BAC library. TaHKT2; 2 genes were mapped on chromosomes 7A, 7B an...In order to study the roles of members of HKT gene fanfily in wheat, TaHKT2 ; 2 was isolated by using homologous cloning strategy and screening genomic BAC library. TaHKT2; 2 genes were mapped on chromosomes 7A, 7B and 7D, named as TaHKT2; 2-7A, TaHKT2; 2-7B, and TaHKT2; 2-7D, respectively. TaHKT2 ; 2 and TaHKT2 ; 1 had the same genetic structure, composed of three exons and two introns, and formed a cluster with TaHKT2 ; 1 on the phylogenetic tree of plant HKT transporters. The coding sequences of TaHKT2 ; 2-7A, TaHKT2 ; 2-7B, and TaHKT2 ; 2-7D were 1 602, 1 602 and 1 596 bp long, respectively, but TaHKT2 ;2-7D cDNA sequence was not isolated by RT-PCR in eight wheat varieties. The natural diversity of TaHKT2 ;2 genes was analyzed by cloning and sequencing from 12 wheat varieties. The results showed that TaHKT2;2-7A was found to be more diverse than TaHKT2; 2-7B and TaHKT2; 2-7D. Only a few bases changed in the alleles of TaHKT2 ; 2 genes in wheat. No amino-acid natural variation lay in the P-loops of deduced protein sequences of all alleles of TaHKT2 ; 2 in 12 wheat varieties. The identity of coding sequences was nmch higher than that of 5' flanking regions of TaHKT2 ; 2 genes. TaHKT2 ; 2 nfight be selected over the comse of wheat domestication and belonged to domestication gene.展开更多
As the second largest dust source on the globe,the tectonic and climatic evolution of continental Asia has an important impact on regional and global climate change.The West Pacific is the main sediment sink for eolia...As the second largest dust source on the globe,the tectonic and climatic evolution of continental Asia has an important impact on regional and global climate change.The West Pacific is the main sediment sink for eolian dust transported eastward from the Asian interior.Clay minerals,as the major fine-grained weathering products of continental rocks,can be readily transported by wind or currents over long distances and thus have been widely used in the reconstruction of paleoclimate and weathering history.However,the overall evolutionary tendency and response mechanism of clay mineral records over large spatial and long timescales across Asia remain unclear.Here,two continuous and high-resolution clay mineral records since 30 Ma were reconstructed from sediments at Deep Sea Drilling Program(DSDP)Sites 292 and 296 in the Philippine Sea.Clay minerals and Sr-Nd isotope compositions were used to constrain provenance and reconstruct the drying history of the dust source region since the Oligocene.The results show that the clay-sized detrital sediments in the Philippine Sea are a mixture of Asian eolian dust and volcanic materials from the West Pacific arcs.Based on the clay mineral compositions and eolian flux,we reveal that the Asian interior has been continuously drying since the late Oligocene and that stepwise enhanced aridification occurred at approximately 20,14,7,and 3 Ma.Compared with other regions of the world,the relative contents of illite and chlorite increased more dramatically in Asia during the late Cenozoic,and the inconsistency became more obvious at approximately 20 Ma.Since 3 Ma,illite and chlorite have increased consistently across the globe.Combined with the Asian tectonic and climatic history,we suggest that the increase in illite and chlorite from Asia between 20 and 3 Ma was mainly in response to the uplift of the Himalayan-Tibetan Plateau,whereas after 3 Ma,it was primarily controlled by global cooling driven by the expansion of the Arctic ice sheet.展开更多
High-specific-energy batteries with long-lifespan are the development aspiration for energy storage applications.Metal electrodes with high specific capacity and low reduction potential are potential candidates for ne...High-specific-energy batteries with long-lifespan are the development aspiration for energy storage applications.Metal electrodes with high specific capacity and low reduction potential are potential candidates for next-generation high-specific-energy batteries.Nevertheless,the stability of the metal electrode batteries is constantly suffered from the unstable interface issue during the plat-ing/stripping process,such as dendrite formation,dynamic evolution of solid electrolyte interphase,and other accompanied side reactions.To solve these challenges,numerous researches have been intensively studied based on the interfacial engineering of metal electrodes,including electrode configuration optimization,interfacial chemistry regulation and solid-solid interface construc-tion,and the recent progress is elaborately introduced in this paper.Nevertheless,the dendrite issues cannot be entirely prohibited in solid metal electrodes,which motivate the search for potential alternatives.Liquid-metal electrodes with completely reversible structural changes and high mass transfer rate are rendered as an effective approach to solve the dendrite problem.Therefore,the development of liquid metal electrode batteries is reviewed in this paper,in which the interfacial issues are explicated and some commendable achievements are summarized.In the end,the implementation of interfacial engineering and the development roadmap of the metal electrode batteries are prospected.展开更多
Soft carbons have attracted extensive interests as competitive anodes for fast-charging sodium-ion batteries(SIBs);however,the high-rate performance is still restricted by their large ion migration barriers and sluggi...Soft carbons have attracted extensive interests as competitive anodes for fast-charging sodium-ion batteries(SIBs);however,the high-rate performance is still restricted by their large ion migration barriers and sluggish reaction kinetics.Herein,we show a molecular design approach toward the fabrication of nitrogen and phosphorus codoped mesoporous soft carbon(NPSC).The key to this strategy lies in the chemical cross-linking reaction between polyphosphoric acid and p-phenylenediamine,associated with pyrolysis induced in-situ self-activation that creates mesoporous structures and rich heteroatoms within the carbon matrix.Thanks to the enlarged interlayer spacing,reduced ion diffusion length,and plentiful active sites,the obtained NPSC delivers a superb rate capacity of 215 mAh g-1 at 10 A g-1 and an ultralong cycle life of 4,700 cycles at 5 A g^(-1).Remarkably,the full cell shows 99%capacity retention during 100 continuous cycles,and maximum energy and power densities of 191 Wh kg^(-1)and 9.2 kW kg^(-1),respectively.We believe that such a synthetic protocol could pave a novel venue to develop soft carbons with unique properties for advanced SIBs.展开更多
nhanced silicate weathering induced by the uplift of the Himalayan-Tibetan Plateau(HTP)has been considered as the major cause of pCO_(2) decline and Cenozoic cooling.However,this hypothesis remains to be validated,lar...nhanced silicate weathering induced by the uplift of the Himalayan-Tibetan Plateau(HTP)has been considered as the major cause of pCO_(2) decline and Cenozoic cooling.However,this hypothesis remains to be validated,largely due to the lack of a reliable reconstruction of the HTP weathering flux.Here,we present a 37-million-year record of the difference in the seawater radiogenic neodymium isotopic composition(△ε_(Nd))of Ocean Drilling Program(ODP)sites and Fe-Mn crusts between the northern and central Indian Ocean,which indicates the contribution of regional weathering input from the South Asian continent to the Indian Ocean.The results show a long-term increase in △ε_(Nd) and thus provide the first critical evidence of enhanced South Asian weathering input since the late Eocene.The evolution coincided well with major pulses of surface uplift in the HTP and global climatic transitions.Our foraminiferal eNd record suggests that tectonic uplift and silicate weathering in South Asia,especially in the Himalayas,might have played a significant role in the late Cenozoic cooling.展开更多
An increasing number of social computational systems consist of a great amount of autonomous entities and operate in highly dynamic and unpredictable environments. To construct such systems needs to seek high-level ab...An increasing number of social computational systems consist of a great amount of autonomous entities and operate in highly dynamic and unpredictable environments. To construct such systems needs to seek high-level abstrac- tion to manage the complexity of the systems and novel mechanism to support their characteristics, i.e., dynamism and flexibility. Agent-oriented programming (AOP) is con- sidered as a potential paradigm for developing such systems by exhibiting a number of characteristics, such as autonomy, flexibility, social ability, etc. However, current researches on AOP mainly focus on the construction of multi-agent system (MAS) with theory and language facilities inspired from arti- ficial intelligence (AI) and distributed AI, seldom considering and integrating the proven principles and practices of pro- gramming and software engineering. Moreover, abstractions and mechanism based on AI are inadequate for developing dynamic and flexible MAS in open environment. This paper proposes a novel AOP approach, namely Oragent, for con- structing and implementing dynamic and flexible systems. From a software engineering perspective, Oragent integrates organizational concepts and mechanism into AOP language, and support the dynamism and flexibility with explicit prim- itives. The proposed approach consists of a programming model and a corresponding programming language. This paper presents the syntax and formal operational semanticsof Oragent language, and studies a case to demonstrate our approach.展开更多
基金supported by the National Natural Science Foundation of China(Grants:51861135315,U1766216,51774148,51804128,52177215,51977097)
文摘Designing flexible free-standing air-electrode with efficient OER/ORR performance is of vital importance for the application of Zinc-air batteries in flexible electronics.Herein,a flexible free-standing electrode(Ni/Fe-NC/NCF/CC)is synthesized by in-situ coupling of binary Ni/Fe-NC nanocubes and N-doped carbon nanofibers(NCF)rooted on carbon cloth.The highly dispersed binary Ni/Fe-NC sites ensure excellent ORR activity and create efficient OER active sites relative to Ni-NC and Fe-NC.The in-situ coupling of Ni/Fe-NC and NCF constructs a 3D interconnected network structure that not only provides abundant and stabilized reactive sites but also guarantees fast electron transfer and gas transportation,thus achieving efficient and fast operation of ORR/OER.Therefore,Ni/Fe-NC/NCF/CC displays a much positive potential(0.952 V)at 4.0 mA cm^(-2)for ORR and a low OER overpotential(310 mV)at 50 mA cm^(-2).The Zinc-air battery with Ni/Fe-NC/NCF/CC air-electrode exhibits excellent battery performance with outstanding discharge/charge durability for 2150 cycles.The flexible Zn-air batteries with foldable mechanical properties display a high power density of 105.0 mW cm^(-2).This work widened the way to prepare flexible bifunctional air-electrode by designing composition/structure and in-situ coupling.
基金supported by the National Natural Science Foundation of China,Nos.81671671(to JL),61971451(to JL),U22A2034(to XK),62177047(to XK)the National Defense Science and Technology Collaborative Innovation Major Project of Central South University,No.2021gfcx05(to JL)+6 种基金Clinical Research Cen terfor Medical Imaging of Hunan Province,No.2020SK4001(to JL)Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection of Hu nan Province,No.2020SK3006(to JL)Innovative Special Construction Foundation of Hunan Province,No.2019SK2131(to JL)the Science and Technology lnnovation Program of Hunan Province,Nos.2021RC4016(to JL),2021SK53503(to ML)Scientific Research Program of Hunan Commission of Health,No.202209044797(to JL)Central South University Research Program of Advanced Interdisciplinary Studies,No.2023Q YJC020(to XK)the Natural Science Foundation of Hunan Province,No.2022JJ30814(to ML)。
文摘Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.
文摘Objective The aim of the study was to study the correlation between the clinicopathological parameters of lung adenocarcinoma and lymph node metastasis and identify the risk factors of lymph node metastasis.Methods The data of 258 patients with postoperative lung adenocarcinoma(mainly based on their pathological data)were collected and analyzed,and their basic information was counted.Results Maximum tumor diameter was found to be an independent risk factor for lymph node metastasis.The larger the maximum diameter of the tumor in patients with lung adenocarcinoma,the higher the likelihood of lymph node metastasis.Solid predominant adenocarcinoma with mucin production is as an independent risk factor for superior mediastinal and subcarinal lymph node metastasis.Primary adenocarcinomas in the lower lobe of the lung may have a higher rate of lymph node metastasis than those in the upper lobe.Conclusion The known pathological subtypes of lung adenocarcinoma can be used for the prediction of lymph node metastasis in various regions and guide the dissection of lymph nodes that would improve patients’prognosis.
基金supported by National Key Research&Development Program of China(Nos.2021YFA1201000,2021YFC2302400)Beijing Institute of Technology Research Fund Program for Young Scholars(No.XSQD-6120220072)+1 种基金National Natural Science Foundation of China(No.82371846)China Postdoctoral Science Foundation(No.2022M720438).
文摘The monkeypox virus(MPXV)outbreak,declared a Public Health Emergency of International Concern(PHEIC)by the World Health Organization(WHO)in 2022,continues to pose a significant threat due to the absence of vaccines or drugs for MPXV infection.In this study,we developed an mRNA vaccine that expressing the A29L antigen,a specific protein of the intracellular mature virus.Our vaccine utilizes a thermostable ionizable lipid nanoparticle(iLNP)platform and has been administered to mice.Our find-ings demonstrate that the MPXV A29L mRNA vaccine candidate induces robust cross-neutralizing immune responses against both vaccinia virus(VACV)and MPXV live virus.Furthermore,immunization with the vaccine candidate provided protection against the VACV challenge in mice.These findings underscore the potential of mRNA-LNP vaccines as safe and effective candidates against monkeypox epidemics.Given the current absence of specific interventions for MPXV infection,our study represents a significant step forward in developing a viable solution to combat this ongoing public health threat.
基金Supported by National Key Research and Development Program of China(2016YFD0101802)Modern Agricultural Science and Technology Innovation Engineering Project of Hebei Province(2017038997)National Natural Science Foundation of Hebei Province(C2014106075)
文摘In order to study the roles of members of HKT gene fanfily in wheat, TaHKT2 ; 2 was isolated by using homologous cloning strategy and screening genomic BAC library. TaHKT2; 2 genes were mapped on chromosomes 7A, 7B and 7D, named as TaHKT2; 2-7A, TaHKT2; 2-7B, and TaHKT2; 2-7D, respectively. TaHKT2 ; 2 and TaHKT2 ; 1 had the same genetic structure, composed of three exons and two introns, and formed a cluster with TaHKT2 ; 1 on the phylogenetic tree of plant HKT transporters. The coding sequences of TaHKT2 ; 2-7A, TaHKT2 ; 2-7B, and TaHKT2 ; 2-7D were 1 602, 1 602 and 1 596 bp long, respectively, but TaHKT2 ;2-7D cDNA sequence was not isolated by RT-PCR in eight wheat varieties. The natural diversity of TaHKT2 ;2 genes was analyzed by cloning and sequencing from 12 wheat varieties. The results showed that TaHKT2;2-7A was found to be more diverse than TaHKT2; 2-7B and TaHKT2; 2-7D. Only a few bases changed in the alleles of TaHKT2 ; 2 genes in wheat. No amino-acid natural variation lay in the P-loops of deduced protein sequences of all alleles of TaHKT2 ; 2 in 12 wheat varieties. The identity of coding sequences was nmch higher than that of 5' flanking regions of TaHKT2 ; 2 genes. TaHKT2 ; 2 nfight be selected over the comse of wheat domestication and belonged to domestication gene.
基金supported by the National Natural Science Foundation of China(Grant Nos.42125602,42076052)the National Key Research and Development Program of China(Grant No.2022YFF0800503)+3 种基金the Strategic Priority Research Program of CAS(Grant No.XDB40010100)the Marine S&T Fund of Shandong Province for QNLM(Grant No.2022QNLM050203)the Innovation Project of QNLM(Grant No.MGQNLM-KF202001)the Taishan and Aoshan Talents Program(Grant No.2017ASTCP-ES01).
文摘As the second largest dust source on the globe,the tectonic and climatic evolution of continental Asia has an important impact on regional and global climate change.The West Pacific is the main sediment sink for eolian dust transported eastward from the Asian interior.Clay minerals,as the major fine-grained weathering products of continental rocks,can be readily transported by wind or currents over long distances and thus have been widely used in the reconstruction of paleoclimate and weathering history.However,the overall evolutionary tendency and response mechanism of clay mineral records over large spatial and long timescales across Asia remain unclear.Here,two continuous and high-resolution clay mineral records since 30 Ma were reconstructed from sediments at Deep Sea Drilling Program(DSDP)Sites 292 and 296 in the Philippine Sea.Clay minerals and Sr-Nd isotope compositions were used to constrain provenance and reconstruct the drying history of the dust source region since the Oligocene.The results show that the clay-sized detrital sediments in the Philippine Sea are a mixture of Asian eolian dust and volcanic materials from the West Pacific arcs.Based on the clay mineral compositions and eolian flux,we reveal that the Asian interior has been continuously drying since the late Oligocene and that stepwise enhanced aridification occurred at approximately 20,14,7,and 3 Ma.Compared with other regions of the world,the relative contents of illite and chlorite increased more dramatically in Asia during the late Cenozoic,and the inconsistency became more obvious at approximately 20 Ma.Since 3 Ma,illite and chlorite have increased consistently across the globe.Combined with the Asian tectonic and climatic history,we suggest that the increase in illite and chlorite from Asia between 20 and 3 Ma was mainly in response to the uplift of the Himalayan-Tibetan Plateau,whereas after 3 Ma,it was primarily controlled by global cooling driven by the expansion of the Arctic ice sheet.
基金supported by National Key Research and Development Program of China(2018YFB0905600)grants from the National Natural Science Foundation of China(Grant Nos.52177215,51977097,51861135315,51804128).
文摘High-specific-energy batteries with long-lifespan are the development aspiration for energy storage applications.Metal electrodes with high specific capacity and low reduction potential are potential candidates for next-generation high-specific-energy batteries.Nevertheless,the stability of the metal electrode batteries is constantly suffered from the unstable interface issue during the plat-ing/stripping process,such as dendrite formation,dynamic evolution of solid electrolyte interphase,and other accompanied side reactions.To solve these challenges,numerous researches have been intensively studied based on the interfacial engineering of metal electrodes,including electrode configuration optimization,interfacial chemistry regulation and solid-solid interface construc-tion,and the recent progress is elaborately introduced in this paper.Nevertheless,the dendrite issues cannot be entirely prohibited in solid metal electrodes,which motivate the search for potential alternatives.Liquid-metal electrodes with completely reversible structural changes and high mass transfer rate are rendered as an effective approach to solve the dendrite problem.Therefore,the development of liquid metal electrode batteries is reviewed in this paper,in which the interfacial issues are explicated and some commendable achievements are summarized.In the end,the implementation of interfacial engineering and the development roadmap of the metal electrode batteries are prospected.
基金supported by the National Natural Science Foundation of China(22279104,51902261,and 61935017)the National Key Research and Development Program of China(2020YFA0709900)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(2020A1515110604)the Natural Science Basic Research Program of Shaanxi(2021JQ-107)the Natural Science Foundation of Ningbo(202003N4053 and 202003N4046)the Provincial Innovation and Entrepreneurship Training Program for College Students(S202110699517).
文摘Soft carbons have attracted extensive interests as competitive anodes for fast-charging sodium-ion batteries(SIBs);however,the high-rate performance is still restricted by their large ion migration barriers and sluggish reaction kinetics.Herein,we show a molecular design approach toward the fabrication of nitrogen and phosphorus codoped mesoporous soft carbon(NPSC).The key to this strategy lies in the chemical cross-linking reaction between polyphosphoric acid and p-phenylenediamine,associated with pyrolysis induced in-situ self-activation that creates mesoporous structures and rich heteroatoms within the carbon matrix.Thanks to the enlarged interlayer spacing,reduced ion diffusion length,and plentiful active sites,the obtained NPSC delivers a superb rate capacity of 215 mAh g-1 at 10 A g-1 and an ultralong cycle life of 4,700 cycles at 5 A g^(-1).Remarkably,the full cell shows 99%capacity retention during 100 continuous cycles,and maximum energy and power densities of 191 Wh kg^(-1)and 9.2 kW kg^(-1),respectively.We believe that such a synthetic protocol could pave a novel venue to develop soft carbons with unique properties for advanced SIBs.
文摘nhanced silicate weathering induced by the uplift of the Himalayan-Tibetan Plateau(HTP)has been considered as the major cause of pCO_(2) decline and Cenozoic cooling.However,this hypothesis remains to be validated,largely due to the lack of a reliable reconstruction of the HTP weathering flux.Here,we present a 37-million-year record of the difference in the seawater radiogenic neodymium isotopic composition(△ε_(Nd))of Ocean Drilling Program(ODP)sites and Fe-Mn crusts between the northern and central Indian Ocean,which indicates the contribution of regional weathering input from the South Asian continent to the Indian Ocean.The results show a long-term increase in △ε_(Nd) and thus provide the first critical evidence of enhanced South Asian weathering input since the late Eocene.The evolution coincided well with major pulses of surface uplift in the HTP and global climatic transitions.Our foraminiferal eNd record suggests that tectonic uplift and silicate weathering in South Asia,especially in the Himalayas,might have played a significant role in the late Cenozoic cooling.
文摘An increasing number of social computational systems consist of a great amount of autonomous entities and operate in highly dynamic and unpredictable environments. To construct such systems needs to seek high-level abstrac- tion to manage the complexity of the systems and novel mechanism to support their characteristics, i.e., dynamism and flexibility. Agent-oriented programming (AOP) is con- sidered as a potential paradigm for developing such systems by exhibiting a number of characteristics, such as autonomy, flexibility, social ability, etc. However, current researches on AOP mainly focus on the construction of multi-agent system (MAS) with theory and language facilities inspired from arti- ficial intelligence (AI) and distributed AI, seldom considering and integrating the proven principles and practices of pro- gramming and software engineering. Moreover, abstractions and mechanism based on AI are inadequate for developing dynamic and flexible MAS in open environment. This paper proposes a novel AOP approach, namely Oragent, for con- structing and implementing dynamic and flexible systems. From a software engineering perspective, Oragent integrates organizational concepts and mechanism into AOP language, and support the dynamism and flexibility with explicit prim- itives. The proposed approach consists of a programming model and a corresponding programming language. This paper presents the syntax and formal operational semanticsof Oragent language, and studies a case to demonstrate our approach.