Defect engineering can give birth to novel properties for adsorption and photocatalysis in the control of antibiotics and heavy metal combined pollution with photocatalytic composites.However,the role of defects and t...Defect engineering can give birth to novel properties for adsorption and photocatalysis in the control of antibiotics and heavy metal combined pollution with photocatalytic composites.However,the role of defects and the process mechanism are complicated and indefinable.Herein,TiO_(2)/CN/3DC was fabricated and defects were introduced into the tripartite structure with separate O_(2)plasma treatment for the single component.We find that defect engineering can improve the photocatalytic activity,attributing to the increase of the contribution from h^(+)and OH.In contrast to TiO_(2)/CN/3DC with a photocatalytic tetracycline removal rate of 75.2%,the removal rate of TC with D-TiO_(2)/CN/3DC has increased to 88.5%.Moreover,the reactive sites of tetracycline can be increased by adsorbing on the defective composites.The defect construction on TiO_(2)shows the advantages in tetracycline degradation and Cu^(2+)adsorption,but also suffers significant inhibition for the tetracycline degradation in a tetracycline/Cu^(2+)combined system.In contrast,the defect construction on graphene can achieve the cooperative removal of tetracycline and Cu^(2+).These findings can provide new insights into water treatment strategies with defect engineering.展开更多
基金support of this research by the National Natural Science Foundation of China(Grant No.51909165,42177438)the Start-up Research Funding of Southwest Jiaotong University(YH1100312372222)+4 种基金the Fundamental Research Funds for the Central Universities(XJ2022003201)Science and Technology Program of Guangzhou(2019050001)National Key Research and Development Program of China(2019YFE0198000)the High-End Foreign Experts Project(G2021030016L)Pearl River Talent Program(2019QN01L951)
文摘Defect engineering can give birth to novel properties for adsorption and photocatalysis in the control of antibiotics and heavy metal combined pollution with photocatalytic composites.However,the role of defects and the process mechanism are complicated and indefinable.Herein,TiO_(2)/CN/3DC was fabricated and defects were introduced into the tripartite structure with separate O_(2)plasma treatment for the single component.We find that defect engineering can improve the photocatalytic activity,attributing to the increase of the contribution from h^(+)and OH.In contrast to TiO_(2)/CN/3DC with a photocatalytic tetracycline removal rate of 75.2%,the removal rate of TC with D-TiO_(2)/CN/3DC has increased to 88.5%.Moreover,the reactive sites of tetracycline can be increased by adsorbing on the defective composites.The defect construction on TiO_(2)shows the advantages in tetracycline degradation and Cu^(2+)adsorption,but also suffers significant inhibition for the tetracycline degradation in a tetracycline/Cu^(2+)combined system.In contrast,the defect construction on graphene can achieve the cooperative removal of tetracycline and Cu^(2+).These findings can provide new insights into water treatment strategies with defect engineering.