Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil...Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.展开更多
Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still...Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still a lack of models for predicting adsorption energies on oxides,due to the complexity of elemental species and the ambiguous coordination environment.This work proposes an active learning workflow(LeNN)founded on local electronic transfer features(e)and the principle of coordinate rotation invariance.By accurately characterizing the electron transfer to adsorption site atoms and their surrounding geometric structures,LeNN mitigates abrupt feature changes due to different element types and clarifies coordination environments.As a result,it enables the prediction of^(*)H adsorption energy on binary oxide surfaces with a mean absolute error(MAE)below 0.18 eV.Moreover,we incorporate local coverage(θ_(l))and leverage neutral network ensemble to establish an active learning workflow,attaining a prediction MAE below 0.2 eV for 5419 multi-^(*)H adsorption structures.These findings validate the universality and capability of the proposed features in predicting^(*)H adsorption energy on binary oxide surfaces.展开更多
The preparation of xylo-oligosaccharides(XOSs)through hydrolysis of hemicelluloses was studied.The hemicelluloses were isolated from the press lye discharged in the production of viscose,which contained about 30%xylan...The preparation of xylo-oligosaccharides(XOSs)through hydrolysis of hemicelluloses was studied.The hemicelluloses were isolated from the press lye discharged in the production of viscose,which contained about 30%xylan.Then,a factorial experimental design was applied to compare the influences of several factors including the concentrations of sulphuric acid and hemicelluloses,the duration and temperature of the hydrolysis,on the conversion of xylan,and the selectivity for the product–XOSs.The results showed that the hydrolysis duration affects the yield of XOSs to the greatest extent.It is difficult to obtain a high yield of XOSs with sulphuric acid as the hydrolysis catalyst.展开更多
Cholellthiasis is a kind of common and multiple diseases. In recent years, traolttonal laparommy has been challenged by a minimally invasive surgery. Through literature review, the therapeutic method, effect, and comp...Cholellthiasis is a kind of common and multiple diseases. In recent years, traolttonal laparommy has been challenged by a minimally invasive surgery. Through literature review, the therapeutic method, effect, and complications of minimally invasive treatment of intrahepatic and extrahepatic bile duct stones by combining our practical experience were summarized as follows. (1) For intrahepatic bile duct stones, the operation may be selected by laparoscopie liver resection, laparoscopic common bile duct exploration (LCBDE), or percutaneous transhepatic cholangioscopy. (2) For concomitant gallstones and common bile duct stones, the surgical approach can be selected as follows: laparoscopic cholecystectomy (LC) combined with endoscopic sphincterotomy (EST) or endoscopic papillary balloon dilatation, LC plus laparoscopic transcystic common bile duct exploration, LC plus LCBDE, and T-tube drainage or primary suture. (3) For concomitant intrahepatic and extrahepatic bile duct stones, laparoscopic liver resection, choledochoscopy through the hepatic duct orifice on the hepatectomy cross section, LCBDE, EST, and percutaneous transhepatic cholangioscopic lithotripsy could be used. According to the abovementioned principle, the minimally invasive treatment approach combined with the surgical technique and equipment condition will be significant in improving the therapeutic effect and avoiding the postoperative complications or hidden dangers of intrahepatic and extrahepatic bile duct stones.展开更多
Solar-driven CO_(2)conversion to chemical fuels in an aqueous solution is restricted not only by photocatalysts but also by mass transfer.Here,a regulatable three-phase interface on a porous fixed-bed is constructed f...Solar-driven CO_(2)conversion to chemical fuels in an aqueous solution is restricted not only by photocatalysts but also by mass transfer.Here,a regulatable three-phase interface on a porous fixed-bed is constructed for efficient C-C coupling in photocatalytic CO_(2)reduction.The photocatalytic results show that∼90%selectivity towards C^(2+)products is obtained by a Cu/Cd_(0.5)Zn_(0.5)S photocatalyst,with a yield of 6.54μmol/h(an irradiation area of 0.785 cm^(2)),while only 0.94μmol/h(an irradiation area of 19.625 cm^(2))is achieved with a commonly used suspension photocatalytic reactor.We find that under the same CO_(2)feed rate,the local CO_(2)concentration in this porous fixed-bed photoreactor is obviously higher than in the suspension photoreactor.The larger local CO_(2)coverage derived from a higher CO_(2)supply and aggregation enhances the C-C coupling,thereby generating more C^(2+).Even an observable three-phase interface on the porous fixed-bed can be regulated by adjusting the CO_(2)supply,for which the optimal gas inlet rate is 5-10 sccm.展开更多
Coal consumption leads to over 15 billion tons of global CO_(2) emissions annually,which will continue at a considerable intensity in the foreseeable future.To remove the huge amount of CO_(2),a practically feasible w...Coal consumption leads to over 15 billion tons of global CO_(2) emissions annually,which will continue at a considerable intensity in the foreseeable future.To remove the huge amount of CO_(2),a practically feasible way of direct carbon mitigation,instead of capturing that from dilute tail gases,should be developed;as intended,we developed two innovative supporting technologies,of which the status,strengths,applications,and perspective are discussed in this paper.One is supercritical water gasification-based coal/biomass utilization technology,which orderly converts chemical energy of coal and low-grade heat into hydrogen energy,and can achieve poly-generation of steam,heat,hydrogen,power,pure CO_(2),and minerals.The other one is the renewables-powered CO_(2) reduction techniques,which uses CO_(2) as the resource for carbon-based fuel production.When combining the above two technical loops,one can achieve a full resource utilization and zero CO_(2) emission,making it a practically feasible way for China and global countries to achieve carbon neutrality while creating substantial domestic benefits of economic growth,competitiveness,well-beings,and new industries.展开更多
基金supported by the National Natural Science Foundation of China (Project No.42375192)the China Meteorological Administration Climate Change Special Program (CMA-CCSP+1 种基金Project No.QBZ202315)support by the Vector Stiftung through the Young Investigator Group"Artificial Intelligence for Probabilistic Weather Forecasting."
文摘Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.
基金supported by the National Natural Science Foundation of China(No.52488201)the Natural Science Basic Research Program of Shaanxi(No.2024JC-YBMS-284)+1 种基金the Key Research and Development Program of Shaanxi(No.2024GHYBXM-02)the Fundamental Research Funds for the Central Universities.
文摘Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still a lack of models for predicting adsorption energies on oxides,due to the complexity of elemental species and the ambiguous coordination environment.This work proposes an active learning workflow(LeNN)founded on local electronic transfer features(e)and the principle of coordinate rotation invariance.By accurately characterizing the electron transfer to adsorption site atoms and their surrounding geometric structures,LeNN mitigates abrupt feature changes due to different element types and clarifies coordination environments.As a result,it enables the prediction of^(*)H adsorption energy on binary oxide surfaces with a mean absolute error(MAE)below 0.18 eV.Moreover,we incorporate local coverage(θ_(l))and leverage neutral network ensemble to establish an active learning workflow,attaining a prediction MAE below 0.2 eV for 5419 multi-^(*)H adsorption structures.These findings validate the universality and capability of the proposed features in predicting^(*)H adsorption energy on binary oxide surfaces.
基金finically supported by Science and Education Integration Program of Henan University of Technology
文摘The preparation of xylo-oligosaccharides(XOSs)through hydrolysis of hemicelluloses was studied.The hemicelluloses were isolated from the press lye discharged in the production of viscose,which contained about 30%xylan.Then,a factorial experimental design was applied to compare the influences of several factors including the concentrations of sulphuric acid and hemicelluloses,the duration and temperature of the hydrolysis,on the conversion of xylan,and the selectivity for the product–XOSs.The results showed that the hydrolysis duration affects the yield of XOSs to the greatest extent.It is difficult to obtain a high yield of XOSs with sulphuric acid as the hydrolysis catalyst.
文摘Cholellthiasis is a kind of common and multiple diseases. In recent years, traolttonal laparommy has been challenged by a minimally invasive surgery. Through literature review, the therapeutic method, effect, and complications of minimally invasive treatment of intrahepatic and extrahepatic bile duct stones by combining our practical experience were summarized as follows. (1) For intrahepatic bile duct stones, the operation may be selected by laparoscopie liver resection, laparoscopic common bile duct exploration (LCBDE), or percutaneous transhepatic cholangioscopy. (2) For concomitant gallstones and common bile duct stones, the surgical approach can be selected as follows: laparoscopic cholecystectomy (LC) combined with endoscopic sphincterotomy (EST) or endoscopic papillary balloon dilatation, LC plus laparoscopic transcystic common bile duct exploration, LC plus LCBDE, and T-tube drainage or primary suture. (3) For concomitant intrahepatic and extrahepatic bile duct stones, laparoscopic liver resection, choledochoscopy through the hepatic duct orifice on the hepatectomy cross section, LCBDE, EST, and percutaneous transhepatic cholangioscopic lithotripsy could be used. According to the abovementioned principle, the minimally invasive treatment approach combined with the surgical technique and equipment condition will be significant in improving the therapeutic effect and avoiding the postoperative complications or hidden dangers of intrahepatic and extrahepatic bile duct stones.
基金S.J.Bai,H.R.Qiu,and M.M.Song contributed equally to this work.This work is supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China(No.51888103).We also thank C.Liao for drawing some pictures for this article.In addition,we thank Doc.N.Deng and Miss D.He at the Instrumental Analysis Center of Xi'an Jiaotong University for their assistance with GC-MS and TRPL measurement.
文摘Solar-driven CO_(2)conversion to chemical fuels in an aqueous solution is restricted not only by photocatalysts but also by mass transfer.Here,a regulatable three-phase interface on a porous fixed-bed is constructed for efficient C-C coupling in photocatalytic CO_(2)reduction.The photocatalytic results show that∼90%selectivity towards C^(2+)products is obtained by a Cu/Cd_(0.5)Zn_(0.5)S photocatalyst,with a yield of 6.54μmol/h(an irradiation area of 0.785 cm^(2)),while only 0.94μmol/h(an irradiation area of 19.625 cm^(2))is achieved with a commonly used suspension photocatalytic reactor.We find that under the same CO_(2)feed rate,the local CO_(2)concentration in this porous fixed-bed photoreactor is obviously higher than in the suspension photoreactor.The larger local CO_(2)coverage derived from a higher CO_(2)supply and aggregation enhances the C-C coupling,thereby generating more C^(2+).Even an observable three-phase interface on the porous fixed-bed can be regulated by adjusting the CO_(2)supply,for which the optimal gas inlet rate is 5-10 sccm.
基金supported by the National Natural Science Foundation of China(No.51888103).
文摘Coal consumption leads to over 15 billion tons of global CO_(2) emissions annually,which will continue at a considerable intensity in the foreseeable future.To remove the huge amount of CO_(2),a practically feasible way of direct carbon mitigation,instead of capturing that from dilute tail gases,should be developed;as intended,we developed two innovative supporting technologies,of which the status,strengths,applications,and perspective are discussed in this paper.One is supercritical water gasification-based coal/biomass utilization technology,which orderly converts chemical energy of coal and low-grade heat into hydrogen energy,and can achieve poly-generation of steam,heat,hydrogen,power,pure CO_(2),and minerals.The other one is the renewables-powered CO_(2) reduction techniques,which uses CO_(2) as the resource for carbon-based fuel production.When combining the above two technical loops,one can achieve a full resource utilization and zero CO_(2) emission,making it a practically feasible way for China and global countries to achieve carbon neutrality while creating substantial domestic benefits of economic growth,competitiveness,well-beings,and new industries.