To address the low conductivity and easy agglomeration of transition metal sulfide nanoparticles,FeCoS_(4) nanoparticles embedded in S-doped hollow carbon(FeCoS_(4)@S-HC)composites were successfully fabricated through...To address the low conductivity and easy agglomeration of transition metal sulfide nanoparticles,FeCoS_(4) nanoparticles embedded in S-doped hollow carbon(FeCoS_(4)@S-HC)composites were successfully fabricated through a combination of hydrothermal processes and sulfidation treatment.The unique bowlshaped FeCoS_(4)/S-HC composites exhibit excellent structural stability with a high specific surface area of 303.7 m^(2)·g^(-1) and a pore volume of 0.93 cm^(3)·g^(-1).When applied as anode material for lithium-ion batteries,the FeCoS_(4)@S-HC anode exhibits efficient lithium storage with high reversible specific capacity(970.2 mA·h·g^(-1) at 100 mA·g^(-1))and enhanced cycling stability(574 mA·h·g^(-1) at 0.2 A·g^(-1) after 350 cycles,a capacity retention of 84%).The excellent lithium storage is attributed to the fact that the bimetallic FeCoS_(4) nanoparticles with abundant active sites can accelerate the electrochemical reaction kinetics,and the bowl-shaped S-HC structure can provide a stable mechanical structure to suppress volume expansion.展开更多
Developing suitable electrode materials for electrochemical energy storage devices by biomorph assisted design has become a fascinating topic due to the fantastic properties derived from bio-architectures.Herein,zephy...Developing suitable electrode materials for electrochemical energy storage devices by biomorph assisted design has become a fascinating topic due to the fantastic properties derived from bio-architectures.Herein,zephyranthes-like Co_(2)NiSe_(4)arrays grown on butterfly wings derived three-dimensional(3D)carbon framework(Z-Co_(2)NiSe_(4)/BWC)is fabricated via hydrothermal assembly and further conversion method.Benefiting from its unique structure and multi-components,the obtained Z-Co_(2)NiSe_(4)/BWC electrode for supercapacitor delivers an excellent specific capacitance of 2,280 F·g^(-1)at 1 A·g^(-1).Impressively,the constructed asymmetric supercapacitor using Co_(2)NiSe_(4)/BWC as positive electrode and activated butterfly wings carbon as negative electrode acquires a high energy density of 42.9 Wh·kg^(-1)at a power density of 800 W·kg^(-1)with robust stability of 94.6%capacitance retention at 10 A·g^(-1)after 5,000 cycles.Moreover,the Z-Co_(2)NiSe_(4)/BWC as anode for sodium-ion batteries exhibits a high specific capacity of 568 mAh·g^(-1)at 0.1 A·g^(-1)and high cycling stability(maintaining 80.1%of the second cycle after 100 cycles).The outstanding electrochemical performances are ascribed to that the synergistic effect of bimetallic selenides and N-doped carbon improves electrochemical activities and conductivity.One-dimensional(1D)nanoneedles grown on 3D porous framework increase the exposure of redox-active sites,endow adequate transmission channels of electrons/ions,and guarantee stability of the electrode during charge/discharge processes.This study will shed light on the avenue towards extending such nanohybrids to excellent energy storage applications.展开更多
基金financially supported by the National Natural Science Foundation of China(22379056,52102260)the Project funded by China Postdoctoral Science Foundation(2022M711545)the Carbon Peak and Carbon Neutrality Project(Breakthrough for Industry Prospect and Key Technologies)of Zhenjiang City(CG2023003)。
文摘To address the low conductivity and easy agglomeration of transition metal sulfide nanoparticles,FeCoS_(4) nanoparticles embedded in S-doped hollow carbon(FeCoS_(4)@S-HC)composites were successfully fabricated through a combination of hydrothermal processes and sulfidation treatment.The unique bowlshaped FeCoS_(4)/S-HC composites exhibit excellent structural stability with a high specific surface area of 303.7 m^(2)·g^(-1) and a pore volume of 0.93 cm^(3)·g^(-1).When applied as anode material for lithium-ion batteries,the FeCoS_(4)@S-HC anode exhibits efficient lithium storage with high reversible specific capacity(970.2 mA·h·g^(-1) at 100 mA·g^(-1))and enhanced cycling stability(574 mA·h·g^(-1) at 0.2 A·g^(-1) after 350 cycles,a capacity retention of 84%).The excellent lithium storage is attributed to the fact that the bimetallic FeCoS_(4) nanoparticles with abundant active sites can accelerate the electrochemical reaction kinetics,and the bowl-shaped S-HC structure can provide a stable mechanical structure to suppress volume expansion.
基金The work was financially supported by the Natural Science Foundation of Jiangsu Province(No.BK20181469)the Science and Technology Planning Social Development Project of Zhenjiang City(No.SSH20190140049).
文摘Developing suitable electrode materials for electrochemical energy storage devices by biomorph assisted design has become a fascinating topic due to the fantastic properties derived from bio-architectures.Herein,zephyranthes-like Co_(2)NiSe_(4)arrays grown on butterfly wings derived three-dimensional(3D)carbon framework(Z-Co_(2)NiSe_(4)/BWC)is fabricated via hydrothermal assembly and further conversion method.Benefiting from its unique structure and multi-components,the obtained Z-Co_(2)NiSe_(4)/BWC electrode for supercapacitor delivers an excellent specific capacitance of 2,280 F·g^(-1)at 1 A·g^(-1).Impressively,the constructed asymmetric supercapacitor using Co_(2)NiSe_(4)/BWC as positive electrode and activated butterfly wings carbon as negative electrode acquires a high energy density of 42.9 Wh·kg^(-1)at a power density of 800 W·kg^(-1)with robust stability of 94.6%capacitance retention at 10 A·g^(-1)after 5,000 cycles.Moreover,the Z-Co_(2)NiSe_(4)/BWC as anode for sodium-ion batteries exhibits a high specific capacity of 568 mAh·g^(-1)at 0.1 A·g^(-1)and high cycling stability(maintaining 80.1%of the second cycle after 100 cycles).The outstanding electrochemical performances are ascribed to that the synergistic effect of bimetallic selenides and N-doped carbon improves electrochemical activities and conductivity.One-dimensional(1D)nanoneedles grown on 3D porous framework increase the exposure of redox-active sites,endow adequate transmission channels of electrons/ions,and guarantee stability of the electrode during charge/discharge processes.This study will shed light on the avenue towards extending such nanohybrids to excellent energy storage applications.