At present,commercial Li-ion batteries are hardly to satisfy the growing demand for high energy density,for this purpose,lithium metal batteries have attracted worldwide attention in recent years.However,its practical...At present,commercial Li-ion batteries are hardly to satisfy the growing demand for high energy density,for this purpose,lithium metal batteries have attracted worldwide attention in recent years.However,its practical applications are hindered by the formation of Li dendrites and volume effect during Li plating/stripping process,which leads to a lot of safety hazards.Herein,we first employed MOF-derived V_(2)O_(5) nanoparticles to decorate the carbon fiber cloth(CFC)backbone to acquire a lithiophilic 3D porous conductive framework(CFC@V_(2)O_(5)).Subsequently,the CFC@V_(2)O_(5) skeleton was permeated with molten Li to prepare CFC@V_(2)O_(5)@Li composite anode.The CFC@V_(2)O_(5)@Li composite anode can be stably cycled for more than 1650 h at high current density(5 mA·cm^(-2))and areal capacity(5 mA·h·cm^(–2)).The prepared full cell can initially maintain a high capacity of about 143 mA·h·g^(-1) even at a high current density of 5 C,and can still maintain 114 mA·h·g^(-1) after 1000 cycles.展开更多
All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance ...All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li~+transport kinetics due to the solid-solid contacts between the electrodes and the solid-state electrolytes.Herein,a novel gel polymer electrolyte(UPP-5)composed of ionic liquid incorporated metal-organic frameworks nanoparticles(IL@MOFs)is designed,it exhibits satisfying electrochemical performances,consisting of an excellent electrochemical stability window(5.5 V)and an improved Li^(+)transference number of 0.52.Moreover,the Li/UPP-5/LiFePO_(4) full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities.This study might provide new insight to create an effective Li^(+)conductive network for the development of all-solid-state lithium-ion batteries.展开更多
Morphology is of great significance to the performance of organic solar cells(OSCs),since appropriate morphology could not only promote the exciton dissociation,but also reduce the charge recombination.In this work,we...Morphology is of great significance to the performance of organic solar cells(OSCs),since appropriate morphology could not only promote the exciton dissociation,but also reduce the charge recombination.In this work,we have developed a solid additive-assisted layer-by-layer(SAA-LBL)processing to fabricate high-efficiency OSCs.By adding the solid additive of fatty acid(FA)into polymer donor PM6 solution,controllable pre-phase separation forms between PM6 and FA.This intermixed morphology facilitates the diffusion of acceptor Y6 into the donor PM6 during the LBL processing,due to the good miscibility and fast-solvation of the FA with chloroform solution dripping.Interestingly,this results in the desired morphology with refined phase-separated domain and vertical phase-separation structure to better balance the charge transport/collection and exciton dissociation.Consequently,the binary single junction OSCs based on PM6:Y6 blend reach champion power conversion efficiency(PCE)of 18.16%with SAA-LBL processing,which can be generally applicable to diverse systems,e.g.,the PM6:L8-BO-based devices and thick-film devices.The efficacy of SAA-LBL is confirmed in binary OSCs based on PM6:L8-BO,where record PCEs of 19.02%and 16.44%are realized for devices with 100 and 250 nm active layers,respectively.The work provides a simple but effective way to control the morphology for high-efficiency OSCs and demonstrates the SAA-LBL processing a promising methodology for boosting the industrial manufacturing of OSCs.展开更多
In order to compensate the primary performance degradation,which is caused by the co-existing secondary communications or the heavy fading of primary link,a cooperative relay scheme is proposed in cognitive radio syst...In order to compensate the primary performance degradation,which is caused by the co-existing secondary communications or the heavy fading of primary link,a cooperative relay scheme is proposed in cognitive radio systems by taking advantage of the opportunities that are arisen by the primary ARQ(Automatic Repeat-reQuest)retransmission.With the help of this scheme,nontrivial relay assistances for the primary retransmission are achieved without initialization phase.The cooperation among secondary users provides additional spatial diversity to facilitate the primary transmission.This can be accomplished with an oblivious primary system and without assuming any non-causal information about the primary data.The scheme are further extended to the scenarios where multiple cognitive pairs exist.Performance analyses of the schemes are devised and the effectiveness is verified via simulations.展开更多
This paper investigates the content placement problem to maximize the cache hit ratio in device-to-device(D2D)communications overlaying cellular networks.We consider offloading contents by users themselves,D2D communi...This paper investigates the content placement problem to maximize the cache hit ratio in device-to-device(D2D)communications overlaying cellular networks.We consider offloading contents by users themselves,D2D communications and multicast,and we analyze the relationship between these offloading methods and the cache hit ratio.Based on this relationship,we formulate the content placement optimization as a cache hit ratio maximization problem,and propose a heuristic algorithm to solve it.Numerical results demonstrate that the proposed scheme can outperform existing schemes in terms of the cache hit ratio.展开更多
For several decades,the promise of implementing of lithium(Li)metal anodes has been regarded as the"holy grail"for Li-based batteries.Herein,we have proposed a facile design of a carbon fiber cloth(CFC)frame...For several decades,the promise of implementing of lithium(Li)metal anodes has been regarded as the"holy grail"for Li-based batteries.Herein,we have proposed a facile design of a carbon fiber cloth(CFC)framework coated with SnO_(2)nanoparticles through a hydrothermal process,which served as a reliable host for prestoring molten Li to produce a CFC@SnO_(2)@Li composite anode.XRD,TEM,HRTEM,XPS and different electrochemical characterizations were carried out.Owing to the synergetic effects of the 3D conductive CFC and the coated lithiophilic SnO_(2)nanoparticles,the designed CFC@SnO_(2)@Li electrodes can buffer the volume changes and reduce the local current density,thus suppress the Li dendrites during cycling.Consequently,the CFC@SnO_(2)electrodes showed a high and stable CE of 98.6%for 1000 cycles at a current density of 1 mA cm^(-2)(1 mAh cm^(-2)).What is more,at a high current density of 5 mA cm^(-2)and a high areal capacity of 5 mAh cm^(-2),the symmetric cell displayed relatively low overpotential and long cycling lifetime of 1600 h.The results confirm its great potential as lithium metal anodes in practical battery applications.展开更多
Dear Editor,Since the COVID-19 pandemic, the potential risks associated with maternal SARS-CoV-2 infection and its effect on fetal development have been a subject of considerable public concern. Previous studies have ...Dear Editor,Since the COVID-19 pandemic, the potential risks associated with maternal SARS-CoV-2 infection and its effect on fetal development have been a subject of considerable public concern. Previous studies have shown that SARS-CoV-2 infection during pregnancy may increase the incidence of adverse outcomes.展开更多
The TET family is well known for active DNA demethylation and plays important roles in regulating transcription,the epigenome and development.Nevertheless,previous studies using knockdown(KD)or knockout(KO)models to i...The TET family is well known for active DNA demethylation and plays important roles in regulating transcription,the epigenome and development.Nevertheless,previous studies using knockdown(KD)or knockout(KO)models to investigate the function of TET have faced challenges in distinguishing its enzymatic and nonenzymatic roles,as well as compensatory effects among TET family members,which has made the understanding of the enzymatic role of TET not accurate enough.To solve this problem,we successfully generated mice catalytically inactive for specific Tet members(Tetm/m).We observed that,compared with the reported KO mice,mutant mice exhibited distinct developmental defects,including growth retardation,sex imbalance,infertility,and perinatal lethality.Notably,Tetm/mmouse embryonic stem cells(mESCs)were successfully established but entered an impaired developmental program,demonstrating extended pluripotency and defects in ectodermal differentiation caused by abnormal DNA methylation.Intriguingly,Tet3,traditionally considered less critical for m ESCs due to its lower expression level,had a significant impact on the global hydroxymethylation,gene expression,and differentiation potential of mESCs.Notably,there were common regulatory regions between Tet1 and Tet3 in pluripotency regulation.In summary,our study provides a more accurate reference for the functional mechanism of Tet hydroxymethylase activity in mouse development and ESC pluripotency regulation.展开更多
For all-solid-state lithium batteries(ASSLBs),polymer-blended solid composite electrolytes(SCEs)have drawn wide interest owing to their significance in improving the interfacial solid-solid contacts and inhibiting the...For all-solid-state lithium batteries(ASSLBs),polymer-blended solid composite electrolytes(SCEs)have drawn wide interest owing to their significance in improving the interfacial solid-solid contacts and inhibiting the growth of lithium dendrites.In this work,SCEs based on PVDF-HFP/PMMA matrix containing MOFs(NH2-MIL-53(Al))and LiTFSI were designed and synthesized employing an easy solution casting method.The synthesized samples were examined by XRD,SEM,EDS,and electrochemical tests.It was found that MPP-2 SCE not only has excellent ionic conductivity at 60℃ of 5.54×10^(−4) S cm^(−1),but also exhibits superior interfacial compatibility in Li||Li symmetric batteries,which can constantly cycle for about 800 h at 0.1 mA cm^(−2) with no short-circuiting.The assembled Li|MPP-2|LiFePO4 cell exhibited a first discharge specific capacity of up to 157.1 mAh g^(−1) at 60℃ and 0.2 C.This work may help to further advance the progress of ASSLBs in the future.展开更多
Dendrobium officinale,an important medicinal plant of the genus Dendrobium in Orchidaceae family,has been used as traditional Chinese medicine(TCM)for nearly thousands of years.Here,we report the first chromosome-leve...Dendrobium officinale,an important medicinal plant of the genus Dendrobium in Orchidaceae family,has been used as traditional Chinese medicine(TCM)for nearly thousands of years.Here,we report the first chromosome-level reference genome of D.officinale,based on Pac Bio long-reads,Illumina short-reads and HiC data.The high-quality assembled genome is 1.23 Gb long,with contig N50 of 1.44 Mb.A total of 93.53%genome sequences were assembled into 19 pseudochromosomes with a super scaffold N50 of 63.07 Mb.Through comparative genomic analysis,we explored the expanded gene families of D.officinale,and also their impact on environmental adaptation and biosynthesis of secondary metabolites.We further performed detailed transcriptional analysis of D.officinale,and identified the candidate genes involved in the biosynthesis of three main active ingredients,including polysaccharides,alkaloids and flavonoids.In addition,the MODIFYING WALL LIGNIN-1(MWL1)gene,which inferred from Genome-Wide Association Studies(GWAS)based on the resequencing date from D.officinale and five related species and their morphologic features,may contribute to the plant production(yield of stems)of D.officinale.Therefore,the high-quality reference genome reported in this study could benefits functional genomics research and molecular breeding of D.officinale.展开更多
During the traumatic brain injury(TBI),improved expression of circulatory miR-21 serves as a diagnostic feature.Low levels of exosome-miR-21 in the brain can effectively improve neuroinflammation and bloodebrain barri...During the traumatic brain injury(TBI),improved expression of circulatory miR-21 serves as a diagnostic feature.Low levels of exosome-miR-21 in the brain can effectively improve neuroinflammation and bloodebrain barrier(BBB)permeability,reduce nerve apoptosis,restore neural function and ameliorate TBI.We evaluated the role of macrophage derived exosomes-miR-21(M-Exos-miR-21)in disrupting BBB,deteriorating TBI,and Rg1 interventions.IL-1β-induced macrophages(ⅡA)-Exos-miR-21 can activate NF-kB signaling pathway and induce the expressions of MMP-1,-3 and-9 and downregulate the levels of tight junction proteins(TJPs)deteriorating the BBB.Rg1 reduced miR-21-5 p content in ⅡA-Exos(RⅡA-Exos).The interaction of NMIIAe HSP90 controlled the release of Exos-miR-21,this interaction was restricted by Rg1.Rg1 could inhibit the Exos-miR-21 release in peripheral blood flow to brain,enhancing TIMP3 protein expression,MMPs proteolysis,and restricting TJPs degradation thus protected the BBB integrity.Conclusively,Rg1 can improve the cerebrovascular endothelial injury and hold the therapeutic potential against TBI disease.展开更多
Comprehensive Summary This work systematically reviews recent progresses in the applications of MOF-derived materials modified 3D porous conductive framework as hosts for uniform lithium deposition in LMBs.A series of...Comprehensive Summary This work systematically reviews recent progresses in the applications of MOF-derived materials modified 3D porous conductive framework as hosts for uniform lithium deposition in LMBs.A series of commonly used lithiophilic materials and several kinds of representative MOF-derivation-modified 3D hosts as lithium metal anode(LMA)are presented.Finally,the challenges and future development of employing MOF-derived materials to modify the 3D porous conductive framework for LMA are included.展开更多
Chemically defined medium is widely used for culturing mouse embryonic stem cells(mESCs),in which N2B27 works as a substitution for serum,and GSK3βand MEK inhibitors(2i)help to promote ground-state pluripo-tency.Howe...Chemically defined medium is widely used for culturing mouse embryonic stem cells(mESCs),in which N2B27 works as a substitution for serum,and GSK3βand MEK inhibitors(2i)help to promote ground-state pluripo-tency.However,recent studies suggested that MEKi might cause irreversible defects that compromise the developmental potential of mESCs.Here,we demon-strated the deficient bone morphogenetic protein(BMP)signal in the chemically defined condition is one of the main causes for the impaired pluripotency.Mechanisti-cally,activating the BMP signal pathway by BMP4 could safeguard the chromosomal integrity and proliferation capacity of mESCs through regulating downstream tar-gets Ube2s and Chmp4b.More importantly,BMP4 pro-motes a distinct in vivo developmental potential and a long-term pluripotency preservation.Besides,the pluripotent improvements driven by BMP4 are superior to those by attenuating MEK suppression.Taken together,our study shows appropriate activation of BMP signal is essential for regulating functional pluripotency and reveals that BMP4 should be applied in the serum-free culture system.展开更多
A series of CuxO self-assembled mesoporous microspheres (SMMs), with different and controlled mor- phology (virus-like, urchin-like, spherical), were synthesized by facile liquid phase approach. The morphology of ...A series of CuxO self-assembled mesoporous microspheres (SMMs), with different and controlled mor- phology (virus-like, urchin-like, spherical), were synthesized by facile liquid phase approach. The morphology of the as- prepared CuxO SMMs was evolved from spherical to virus-like shape by controlling the ratio of DI water in solution. It can also realize the transformation from loose assembly to dense assembly by extending the reaction time. These CuxO SMMs exhibited good response to NO2 gas at room temperature, benefiting from their 3D self-assembly structure. Among these the resulting virus-like CuxO SNMMs-based sensor exhibits largely enhanced response to 1 ppm NO2 gas at room temperature. The enhanced response of the virus-like Cn2O SMMs-based sensor can be ascribed to the high surface area, hier- archical 3D nanostructures, micropores for effective gas diffusion, the heterojunctions formed between CuO and Cu2O, and the existence of abundant surface oxygen vacancies.展开更多
To the Editor:Acute kidney injury(AKI)is a common public health problem worldwide,which can adversely affect patients’quality of life and even lead to death.^([1])Academic hospitals play an important role in admittin...To the Editor:Acute kidney injury(AKI)is a common public health problem worldwide,which can adversely affect patients’quality of life and even lead to death.^([1])Academic hospitals play an important role in admitting and providing treatment for patients with AKI,but limited data exist regarding the characteristics of patients in county-level local hospitals.Our research group initiated a comprehensive survey as part of the International Society of Nephrology’s"0 by 25"project(eliminating all deaths related to untreated AKI by 2025)for investigating the disease burden of AKI and its associated risk factors and prognosis through 22 province-level regions of China in 2013.展开更多
基金supported by National Natural Science Foundation of China(21701083).
文摘At present,commercial Li-ion batteries are hardly to satisfy the growing demand for high energy density,for this purpose,lithium metal batteries have attracted worldwide attention in recent years.However,its practical applications are hindered by the formation of Li dendrites and volume effect during Li plating/stripping process,which leads to a lot of safety hazards.Herein,we first employed MOF-derived V_(2)O_(5) nanoparticles to decorate the carbon fiber cloth(CFC)backbone to acquire a lithiophilic 3D porous conductive framework(CFC@V_(2)O_(5)).Subsequently,the CFC@V_(2)O_(5) skeleton was permeated with molten Li to prepare CFC@V_(2)O_(5)@Li composite anode.The CFC@V_(2)O_(5)@Li composite anode can be stably cycled for more than 1650 h at high current density(5 mA·cm^(-2))and areal capacity(5 mA·h·cm^(–2)).The prepared full cell can initially maintain a high capacity of about 143 mA·h·g^(-1) even at a high current density of 5 C,and can still maintain 114 mA·h·g^(-1) after 1000 cycles.
基金financially supported by National Natural Science Foundation of China (No.21701083)。
文摘All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li~+transport kinetics due to the solid-solid contacts between the electrodes and the solid-state electrolytes.Herein,a novel gel polymer electrolyte(UPP-5)composed of ionic liquid incorporated metal-organic frameworks nanoparticles(IL@MOFs)is designed,it exhibits satisfying electrochemical performances,consisting of an excellent electrochemical stability window(5.5 V)and an improved Li^(+)transference number of 0.52.Moreover,the Li/UPP-5/LiFePO_(4) full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities.This study might provide new insight to create an effective Li^(+)conductive network for the development of all-solid-state lithium-ion batteries.
基金supported by the National Key Research and Development Program of China(No.2019YFA0705900)the National Natural Science Foundation of China(Nos.52127806,52173185,21734008,and 61721005)+1 种基金the Fundamental Research Funds for the Central Universities(No.226-2022-00133 and No.226-2022-00209)research start up fund from Zhejiang University。
文摘Morphology is of great significance to the performance of organic solar cells(OSCs),since appropriate morphology could not only promote the exciton dissociation,but also reduce the charge recombination.In this work,we have developed a solid additive-assisted layer-by-layer(SAA-LBL)processing to fabricate high-efficiency OSCs.By adding the solid additive of fatty acid(FA)into polymer donor PM6 solution,controllable pre-phase separation forms between PM6 and FA.This intermixed morphology facilitates the diffusion of acceptor Y6 into the donor PM6 during the LBL processing,due to the good miscibility and fast-solvation of the FA with chloroform solution dripping.Interestingly,this results in the desired morphology with refined phase-separated domain and vertical phase-separation structure to better balance the charge transport/collection and exciton dissociation.Consequently,the binary single junction OSCs based on PM6:Y6 blend reach champion power conversion efficiency(PCE)of 18.16%with SAA-LBL processing,which can be generally applicable to diverse systems,e.g.,the PM6:L8-BO-based devices and thick-film devices.The efficacy of SAA-LBL is confirmed in binary OSCs based on PM6:L8-BO,where record PCEs of 19.02%and 16.44%are realized for devices with 100 and 250 nm active layers,respectively.The work provides a simple but effective way to control the morphology for high-efficiency OSCs and demonstrates the SAA-LBL processing a promising methodology for boosting the industrial manufacturing of OSCs.
基金supported by the National Natural Science Foundation of China (No.61601334,61601509)
文摘In order to compensate the primary performance degradation,which is caused by the co-existing secondary communications or the heavy fading of primary link,a cooperative relay scheme is proposed in cognitive radio systems by taking advantage of the opportunities that are arisen by the primary ARQ(Automatic Repeat-reQuest)retransmission.With the help of this scheme,nontrivial relay assistances for the primary retransmission are achieved without initialization phase.The cooperation among secondary users provides additional spatial diversity to facilitate the primary transmission.This can be accomplished with an oblivious primary system and without assuming any non-causal information about the primary data.The scheme are further extended to the scenarios where multiple cognitive pairs exist.Performance analyses of the schemes are devised and the effectiveness is verified via simulations.
基金partly supported by the Na-tional Natural Science Foundation of China (No.61601334,61601509)
文摘This paper investigates the content placement problem to maximize the cache hit ratio in device-to-device(D2D)communications overlaying cellular networks.We consider offloading contents by users themselves,D2D communications and multicast,and we analyze the relationship between these offloading methods and the cache hit ratio.Based on this relationship,we formulate the content placement optimization as a cache hit ratio maximization problem,and propose a heuristic algorithm to solve it.Numerical results demonstrate that the proposed scheme can outperform existing schemes in terms of the cache hit ratio.
基金supported by National Natural Science Foundation of China(grant Nos.21701083,22279112)Natural Science Foundation of Hebei Province(grant No.B2022203018).
文摘For several decades,the promise of implementing of lithium(Li)metal anodes has been regarded as the"holy grail"for Li-based batteries.Herein,we have proposed a facile design of a carbon fiber cloth(CFC)framework coated with SnO_(2)nanoparticles through a hydrothermal process,which served as a reliable host for prestoring molten Li to produce a CFC@SnO_(2)@Li composite anode.XRD,TEM,HRTEM,XPS and different electrochemical characterizations were carried out.Owing to the synergetic effects of the 3D conductive CFC and the coated lithiophilic SnO_(2)nanoparticles,the designed CFC@SnO_(2)@Li electrodes can buffer the volume changes and reduce the local current density,thus suppress the Li dendrites during cycling.Consequently,the CFC@SnO_(2)electrodes showed a high and stable CE of 98.6%for 1000 cycles at a current density of 1 mA cm^(-2)(1 mAh cm^(-2)).What is more,at a high current density of 5 mA cm^(-2)and a high areal capacity of 5 mAh cm^(-2),the symmetric cell displayed relatively low overpotential and long cycling lifetime of 1600 h.The results confirm its great potential as lithium metal anodes in practical battery applications.
基金supported by the Chinese National Program on the Key Basic Research Project(2021YFA1100300,2020YFA0112500)the National Natural Science Foundation of China(31721003,31820103009,32270856,32070857,32270858)。
文摘Dear Editor,Since the COVID-19 pandemic, the potential risks associated with maternal SARS-CoV-2 infection and its effect on fetal development have been a subject of considerable public concern. Previous studies have shown that SARS-CoV-2 infection during pregnancy may increase the incidence of adverse outcomes.
基金supported by the National Key Research and Development Program of China(2020YFA0112500,2021YFA1100300,2021YFC2700300 and 2022YFC2702200)supported by the Fundamental Research Funds for the Central Universities+2 种基金National Natural Science Foundation of China(32070857 and 32270856,and 32270858)the Science and Technology Commission of Shanghai Municipality(23JC1403700)Peak Disciplines(TypeⅣ)of Institutions of Higher Learning in Shanghai。
文摘The TET family is well known for active DNA demethylation and plays important roles in regulating transcription,the epigenome and development.Nevertheless,previous studies using knockdown(KD)or knockout(KO)models to investigate the function of TET have faced challenges in distinguishing its enzymatic and nonenzymatic roles,as well as compensatory effects among TET family members,which has made the understanding of the enzymatic role of TET not accurate enough.To solve this problem,we successfully generated mice catalytically inactive for specific Tet members(Tetm/m).We observed that,compared with the reported KO mice,mutant mice exhibited distinct developmental defects,including growth retardation,sex imbalance,infertility,and perinatal lethality.Notably,Tetm/mmouse embryonic stem cells(mESCs)were successfully established but entered an impaired developmental program,demonstrating extended pluripotency and defects in ectodermal differentiation caused by abnormal DNA methylation.Intriguingly,Tet3,traditionally considered less critical for m ESCs due to its lower expression level,had a significant impact on the global hydroxymethylation,gene expression,and differentiation potential of mESCs.Notably,there were common regulatory regions between Tet1 and Tet3 in pluripotency regulation.In summary,our study provides a more accurate reference for the functional mechanism of Tet hydroxymethylase activity in mouse development and ESC pluripotency regulation.
基金supported by National Natural Science Foundation of China(grant Nos.21701083,22179054)The Ministry of Science and Technology of the People's Republic of China(grant No.G2023014022L)Jiangsu Provincial Key Research and Development Program(grant No.BZ2023010).
文摘For all-solid-state lithium batteries(ASSLBs),polymer-blended solid composite electrolytes(SCEs)have drawn wide interest owing to their significance in improving the interfacial solid-solid contacts and inhibiting the growth of lithium dendrites.In this work,SCEs based on PVDF-HFP/PMMA matrix containing MOFs(NH2-MIL-53(Al))and LiTFSI were designed and synthesized employing an easy solution casting method.The synthesized samples were examined by XRD,SEM,EDS,and electrochemical tests.It was found that MPP-2 SCE not only has excellent ionic conductivity at 60℃ of 5.54×10^(−4) S cm^(−1),but also exhibits superior interfacial compatibility in Li||Li symmetric batteries,which can constantly cycle for about 800 h at 0.1 mA cm^(−2) with no short-circuiting.The assembled Li|MPP-2|LiFePO4 cell exhibited a first discharge specific capacity of up to 157.1 mAh g^(−1) at 60℃ and 0.2 C.This work may help to further advance the progress of ASSLBs in the future.
基金supported by grants from the National Natural Science Foundation of China(Grant No.31900268,31670330 and 32070353)Natural Science Foundation of Jiangsu Province,China(BK20190699)Natural science fund for colleges and universities in Jiangsu Province,China(19KJB180005)
文摘Dendrobium officinale,an important medicinal plant of the genus Dendrobium in Orchidaceae family,has been used as traditional Chinese medicine(TCM)for nearly thousands of years.Here,we report the first chromosome-level reference genome of D.officinale,based on Pac Bio long-reads,Illumina short-reads and HiC data.The high-quality assembled genome is 1.23 Gb long,with contig N50 of 1.44 Mb.A total of 93.53%genome sequences were assembled into 19 pseudochromosomes with a super scaffold N50 of 63.07 Mb.Through comparative genomic analysis,we explored the expanded gene families of D.officinale,and also their impact on environmental adaptation and biosynthesis of secondary metabolites.We further performed detailed transcriptional analysis of D.officinale,and identified the candidate genes involved in the biosynthesis of three main active ingredients,including polysaccharides,alkaloids and flavonoids.In addition,the MODIFYING WALL LIGNIN-1(MWL1)gene,which inferred from Genome-Wide Association Studies(GWAS)based on the resequencing date from D.officinale and five related species and their morphologic features,may contribute to the plant production(yield of stems)of D.officinale.Therefore,the high-quality reference genome reported in this study could benefits functional genomics research and molecular breeding of D.officinale.
基金supported by National Natural Science Foundation of China(81601034 and 31850410476)Anhui Provincial Science Fund for Distinguished Young Scholars(2008085J39,China)+5 种基金Focus on Research and Development Projects in Anhui Province(1804a0802225,China)State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources(CMEMR2020B13,Guangxi Normal University,China)the Natural Science Foundation of Anhui Educational Committee(KJ2018ZD044 and KJ2020A0728,China)Key Disciplines of Pharmacy(2019xjzdxk2,China)the Back-up Candidates for Academic and Technical Leaders of Suzhou University(2018XJHB06,China)Key Research Project of Suzhou University(2019yzd06,China)。
文摘During the traumatic brain injury(TBI),improved expression of circulatory miR-21 serves as a diagnostic feature.Low levels of exosome-miR-21 in the brain can effectively improve neuroinflammation and bloodebrain barrier(BBB)permeability,reduce nerve apoptosis,restore neural function and ameliorate TBI.We evaluated the role of macrophage derived exosomes-miR-21(M-Exos-miR-21)in disrupting BBB,deteriorating TBI,and Rg1 interventions.IL-1β-induced macrophages(ⅡA)-Exos-miR-21 can activate NF-kB signaling pathway and induce the expressions of MMP-1,-3 and-9 and downregulate the levels of tight junction proteins(TJPs)deteriorating the BBB.Rg1 reduced miR-21-5 p content in ⅡA-Exos(RⅡA-Exos).The interaction of NMIIAe HSP90 controlled the release of Exos-miR-21,this interaction was restricted by Rg1.Rg1 could inhibit the Exos-miR-21 release in peripheral blood flow to brain,enhancing TIMP3 protein expression,MMPs proteolysis,and restricting TJPs degradation thus protected the BBB integrity.Conclusively,Rg1 can improve the cerebrovascular endothelial injury and hold the therapeutic potential against TBI disease.
基金the National Natural Science Foundation of China(Nos.21701083 and 22179054).
文摘Comprehensive Summary This work systematically reviews recent progresses in the applications of MOF-derived materials modified 3D porous conductive framework as hosts for uniform lithium deposition in LMBs.A series of commonly used lithiophilic materials and several kinds of representative MOF-derivation-modified 3D hosts as lithium metal anode(LMA)are presented.Finally,the challenges and future development of employing MOF-derived materials to modify the 3D porous conductive framework for LMA are included.
基金This work was supported by the National Key R&D Program of China(2020YFA0112500 and 2021YFA1100300)the National Natural Science Foundation of China(31721003,31820103009,92168205,32070857 and 31871446)+3 种基金the Young Elite Scientist Sponsorship Program by CAST(2018QNRC001)the key project of the Science and Technology of Shanghai Municipality(19JC1415300)the Shanghai Rising-Star Program(19QA1409600)the Shanghai municipal medical and health discipline construction projects(no.2017ZZ02015).
文摘Chemically defined medium is widely used for culturing mouse embryonic stem cells(mESCs),in which N2B27 works as a substitution for serum,and GSK3βand MEK inhibitors(2i)help to promote ground-state pluripo-tency.However,recent studies suggested that MEKi might cause irreversible defects that compromise the developmental potential of mESCs.Here,we demon-strated the deficient bone morphogenetic protein(BMP)signal in the chemically defined condition is one of the main causes for the impaired pluripotency.Mechanisti-cally,activating the BMP signal pathway by BMP4 could safeguard the chromosomal integrity and proliferation capacity of mESCs through regulating downstream tar-gets Ube2s and Chmp4b.More importantly,BMP4 pro-motes a distinct in vivo developmental potential and a long-term pluripotency preservation.Besides,the pluripotent improvements driven by BMP4 are superior to those by attenuating MEK suppression.Taken together,our study shows appropriate activation of BMP signal is essential for regulating functional pluripotency and reveals that BMP4 should be applied in the serum-free culture system.
基金supported by the National Natural Science Foundation(51501010,91323301,51631001,51372025 and21643003)
文摘A series of CuxO self-assembled mesoporous microspheres (SMMs), with different and controlled mor- phology (virus-like, urchin-like, spherical), were synthesized by facile liquid phase approach. The morphology of the as- prepared CuxO SMMs was evolved from spherical to virus-like shape by controlling the ratio of DI water in solution. It can also realize the transformation from loose assembly to dense assembly by extending the reaction time. These CuxO SMMs exhibited good response to NO2 gas at room temperature, benefiting from their 3D self-assembly structure. Among these the resulting virus-like CuxO SNMMs-based sensor exhibits largely enhanced response to 1 ppm NO2 gas at room temperature. The enhanced response of the virus-like Cn2O SMMs-based sensor can be ascribed to the high surface area, hier- archical 3D nanostructures, micropores for effective gas diffusion, the heterojunctions formed between CuO and Cu2O, and the existence of abundant surface oxygen vacancies.
基金supported by the Natural Key R&D Project of China(2020YFA0113200,2018YFC1003102,and 2021YFC2700300)the National Natural Science Foundation of China(31721003,31970814,31871438,31820103009,and 82071565)+1 种基金the 2115 Talent Development Program of China Agricultural Universitythe Youth Innovation Promotion Association of Chinese Academy of Sciences(2020104)。
基金supported by the National Natural Science Foundation of China(51902218,21972102,22101197,and 22202144)Jiangsu Provincial Graduate Scientific Research and Practice Innovation Plan Project(KYCX21_3016)+2 种基金the National Key Research and Development Program of China(2021YFA0910403)funded by the innovation platform for Academicians of Hainan ProvinceSuzhou Foreign Academician Workstation。
基金supported by grants from the National Natural Science Foundation of China(Nos.91742205,81625004,and 81860129)the Beijing Young Scientist Program(No.BJJWZYJH01201910001006)the Peking University Clinical Scientist Program by the Fundamental Research Funds for the Central Universities.
文摘To the Editor:Acute kidney injury(AKI)is a common public health problem worldwide,which can adversely affect patients’quality of life and even lead to death.^([1])Academic hospitals play an important role in admitting and providing treatment for patients with AKI,but limited data exist regarding the characteristics of patients in county-level local hospitals.Our research group initiated a comprehensive survey as part of the International Society of Nephrology’s"0 by 25"project(eliminating all deaths related to untreated AKI by 2025)for investigating the disease burden of AKI and its associated risk factors and prognosis through 22 province-level regions of China in 2013.