Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioni...Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioning calculation method considering the degree of voltage drop at the grid-connected point of DG.Firstly,the output characteristics of DG in the process of low voltage ride through are analyzed,and the equivalent output model of DG in the fault state is obtained.Secondly,by studying the network voltage distribution law after fault in distribution networks under different DG penetration rates,the degree of voltage drop at the grid-connected point of DG is used as a partition index to partition the distribution network.Then,iterative computation is performed within each partition,and data are transferred between partitions through split nodes to realize the fast partition calculation of short-circuit current for high proportion DG access to distribution network,which solves the problems of long iteration time and large calculation error of traditional short-circuit current.Finally,a 62-node real distribution network model containing a high proportion of DG access is constructed onMATLAB/Simulink,and the simulation verifies the effectiveness of the short-circuit current partitioning calculation method proposed in the paper,and its calculation speed is improved by 48.35%compared with the global iteration method.展开更多
It is generally recognized that internal-loop reactors are well-developed mass and heat-transfer multiphase flow reactors. However, the internal flow field in the internal-loop reactor is influenced by the structure p...It is generally recognized that internal-loop reactors are well-developed mass and heat-transfer multiphase flow reactors. However, the internal flow field in the internal-loop reactor is influenced by the structure parameter of the reactor, which has a great effect on the reaction efficiency. In this study, the computational fluid dynamics simulation method was used to determine the influence of reactor structure on flow field, and a volume-offluid model was employed to simulate the gas–liquid, two-phase flow of the internal-loop micro-electrolysis reactor. Hydrodynamic factors were optimized when the height-to-diameter ratio was 4:1, diameter ratio was9:1, draft-tube axial height was 90 mm. Three-dimensional simulations for the water distributor were carried out, and the results suggested that the optimal conditions are as follows: the number of water distribution pipes was four, and an inhomogeneous water distribution was used. According to the results of the simulation,the suitable structure can be used to achieve good fluid mechanical properties, such as the good liquid circulation velocity and gas holdup, which provides a good theoretical foundation for the application of the reactor.展开更多
通过聚甲基丙烯酸甲酯(PMMA)插层改性蒙脱土(MMT)获得了功能化改性蒙脱土(MMT-PMMA),通过刮涂在聚丙烯(PP)微孔膜表面引入MMT-PMMA后,再通过浸涂在微孔膜表面引入单宁酸(TA),制备了具有高电解液润湿性和高耐热性的改性微孔膜(PP/MMT-PMM...通过聚甲基丙烯酸甲酯(PMMA)插层改性蒙脱土(MMT)获得了功能化改性蒙脱土(MMT-PMMA),通过刮涂在聚丙烯(PP)微孔膜表面引入MMT-PMMA后,再通过浸涂在微孔膜表面引入单宁酸(TA),制备了具有高电解液润湿性和高耐热性的改性微孔膜(PP/MMT-PMMA/TA)。接触角测试结果显示,PP微孔膜改性后,电解液接触角由47°降至0°,且电解液吸收率由PP膜的97.5%提高至136.6%,证明PP/MMT-PMMA/TA微孔膜具有良好的电解液亲和性。将微孔膜在不同温度放置30 min测试其耐热性,结果表明,PP/MMT-PMMA/TA微孔膜的耐热性较改性前的PP微孔膜有显著提升。电池性能测试结果表明,经PP/MMT-PMMA/TA微孔膜组装的电池首次充放电容量(60.0 m Ah/g)相比改性前的PP微孔膜(41.3 mAh/g)提升了45%,且倍率性能更好。展开更多
With the rapid development of China's economy,people's demand for a healthy living environment is increasing,and air quality has gradually been widely concerned by all sectors of society.Using the big data of ...With the rapid development of China's economy,people's demand for a healthy living environment is increasing,and air quality has gradually been widely concerned by all sectors of society.Using the big data of air quality monitoring from 1998 to 2016,based on the exploratory spatio-temporal analysis method,this paper explored the spatio-temporal evolution of PM_(2.5) at the national scale,and drew the following conclusions:①PM_(2.5) heavy pollution is mainly in central and eastern China,north and south China,and the pollution degree is relatively light in northwest and northeast China.Meanwhile,PM_(2.5) concentration in heavily polluted areas increased significantly over time,while PM_(2.5) concentration in low-polluted areas showed a long-term stable trend.②The number and area of cities with moderate and high PM_(2.5) pollution levels showed an inverted U-shaped curve from 1998 to 2016,and 2007 was the inflection point.③The spatial autocorrelation coefficient of PM_(2.5) is high over the years,and the spatial neighbor effect of PM_(2.5) is significant.The high-pollution clusters are mainly concentrated in the Beijing-Tianjin-Hebei region,the Yangtze River Delta and the Pearl River Delta,and the pollution concentration in these three regions has increased rapidly in recent years.It is necessary to focus on joint prevention and control.展开更多
Fatigue crack growth tests were carried out on the SEN B3 precracked specimens, with dimensions in accordance with ISO 12108 requirements. The specimens were made of martensitic stainless steel, X17CrNi15-2, and some ...Fatigue crack growth tests were carried out on the SEN B3 precracked specimens, with dimensions in accordance with ISO 12108 requirements. The specimens were made of martensitic stainless steel, X17CrNi15-2, and some of them were modified by the ceramic coating deposition surface treatment. The effects of ceramic coating, on the fatigue crack growth behaviour of hollow shaft specimens, were experimentally investigated. Fatigue crack growth rates, da/dN, were characterised, using the power law relationship between da/dN (in mm/cycle) and the stress intensity factor range, ΔK (in MPa∙m0.5). The two constants of the correlation are 7.9768 × 10−9 and 2.8107 for the parent material, and those for the coated material are 2.4391 × 10−9 and 3.1990, respectively. Microstructural analyses were carried out on the tested specimens, which shows that the maximum hardness of the ceramic coating is higher than that of substrate by a factor of ~3.2. The dimple fracture dominates the final fracture mechanism for the parent material, and the combination of fatigue, ductile fracture and cleavage dominates the final fracture mechanism for the coated material, based on the SEM analyses. EDS tests’ results reveal that the parent material specimen shows higher levels of C at matrix regions along with Fe- and O-rich regions, compared with the coated material specimen.展开更多
A green efficient photoredox-catalyzed decarboxylative alkynylation of carboxylic acids with alkynyl bromides has been developed.This broadly applicable protocol is presented whereinα-amino,aliphatic andα-oxy acids ...A green efficient photoredox-catalyzed decarboxylative alkynylation of carboxylic acids with alkynyl bromides has been developed.This broadly applicable protocol is presented whereinα-amino,aliphatic andα-oxy acids are converted into useful alkynylation products.The commercially-available organic photocatalyst 4CzIPN is used as the photocatalyst,organic base DBU is utilized as the base,and DMSO serves as solvent.This strategy features mild conditions,is metal-free,and is environmentally friendly.The batch and continuous-flow protocols described were applied to obtain a broader substrate scope of functionalization(more than 50 examples).Furthermore,we demonstrate that the use of microflow technology enhanced and intensified the reaction process,achieving significantly reduced reaction times(i.e.,10 min of residence time).展开更多
基金funded by the National Natural Science Foundation of China(52077004)Anhui Electric Power Company of the State Grid(52120021N00L).
文摘Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioning calculation method considering the degree of voltage drop at the grid-connected point of DG.Firstly,the output characteristics of DG in the process of low voltage ride through are analyzed,and the equivalent output model of DG in the fault state is obtained.Secondly,by studying the network voltage distribution law after fault in distribution networks under different DG penetration rates,the degree of voltage drop at the grid-connected point of DG is used as a partition index to partition the distribution network.Then,iterative computation is performed within each partition,and data are transferred between partitions through split nodes to realize the fast partition calculation of short-circuit current for high proportion DG access to distribution network,which solves the problems of long iteration time and large calculation error of traditional short-circuit current.Finally,a 62-node real distribution network model containing a high proportion of DG access is constructed onMATLAB/Simulink,and the simulation verifies the effectiveness of the short-circuit current partitioning calculation method proposed in the paper,and its calculation speed is improved by 48.35%compared with the global iteration method.
基金Supported by the National Natural Science Foundation of China(21677018)Jointly Projects of Beijing Natural Science Foundation and Beijing Municipal Education Commission(KZ201810017024)
文摘It is generally recognized that internal-loop reactors are well-developed mass and heat-transfer multiphase flow reactors. However, the internal flow field in the internal-loop reactor is influenced by the structure parameter of the reactor, which has a great effect on the reaction efficiency. In this study, the computational fluid dynamics simulation method was used to determine the influence of reactor structure on flow field, and a volume-offluid model was employed to simulate the gas–liquid, two-phase flow of the internal-loop micro-electrolysis reactor. Hydrodynamic factors were optimized when the height-to-diameter ratio was 4:1, diameter ratio was9:1, draft-tube axial height was 90 mm. Three-dimensional simulations for the water distributor were carried out, and the results suggested that the optimal conditions are as follows: the number of water distribution pipes was four, and an inhomogeneous water distribution was used. According to the results of the simulation,the suitable structure can be used to achieve good fluid mechanical properties, such as the good liquid circulation velocity and gas holdup, which provides a good theoretical foundation for the application of the reactor.
文摘通过聚甲基丙烯酸甲酯(PMMA)插层改性蒙脱土(MMT)获得了功能化改性蒙脱土(MMT-PMMA),通过刮涂在聚丙烯(PP)微孔膜表面引入MMT-PMMA后,再通过浸涂在微孔膜表面引入单宁酸(TA),制备了具有高电解液润湿性和高耐热性的改性微孔膜(PP/MMT-PMMA/TA)。接触角测试结果显示,PP微孔膜改性后,电解液接触角由47°降至0°,且电解液吸收率由PP膜的97.5%提高至136.6%,证明PP/MMT-PMMA/TA微孔膜具有良好的电解液亲和性。将微孔膜在不同温度放置30 min测试其耐热性,结果表明,PP/MMT-PMMA/TA微孔膜的耐热性较改性前的PP微孔膜有显著提升。电池性能测试结果表明,经PP/MMT-PMMA/TA微孔膜组装的电池首次充放电容量(60.0 m Ah/g)相比改性前的PP微孔膜(41.3 mAh/g)提升了45%,且倍率性能更好。
基金Supported by the National Natural Science Foundation of China(51808413)General Project of Hubei Social Science Fund(Later Funded Project)(2020158)Innovation and Entrepreneurship Training Program for College Students in Hubei Province(S202010490027)。
文摘With the rapid development of China's economy,people's demand for a healthy living environment is increasing,and air quality has gradually been widely concerned by all sectors of society.Using the big data of air quality monitoring from 1998 to 2016,based on the exploratory spatio-temporal analysis method,this paper explored the spatio-temporal evolution of PM_(2.5) at the national scale,and drew the following conclusions:①PM_(2.5) heavy pollution is mainly in central and eastern China,north and south China,and the pollution degree is relatively light in northwest and northeast China.Meanwhile,PM_(2.5) concentration in heavily polluted areas increased significantly over time,while PM_(2.5) concentration in low-polluted areas showed a long-term stable trend.②The number and area of cities with moderate and high PM_(2.5) pollution levels showed an inverted U-shaped curve from 1998 to 2016,and 2007 was the inflection point.③The spatial autocorrelation coefficient of PM_(2.5) is high over the years,and the spatial neighbor effect of PM_(2.5) is significant.The high-pollution clusters are mainly concentrated in the Beijing-Tianjin-Hebei region,the Yangtze River Delta and the Pearl River Delta,and the pollution concentration in these three regions has increased rapidly in recent years.It is necessary to focus on joint prevention and control.
文摘Fatigue crack growth tests were carried out on the SEN B3 precracked specimens, with dimensions in accordance with ISO 12108 requirements. The specimens were made of martensitic stainless steel, X17CrNi15-2, and some of them were modified by the ceramic coating deposition surface treatment. The effects of ceramic coating, on the fatigue crack growth behaviour of hollow shaft specimens, were experimentally investigated. Fatigue crack growth rates, da/dN, were characterised, using the power law relationship between da/dN (in mm/cycle) and the stress intensity factor range, ΔK (in MPa∙m0.5). The two constants of the correlation are 7.9768 × 10−9 and 2.8107 for the parent material, and those for the coated material are 2.4391 × 10−9 and 3.1990, respectively. Microstructural analyses were carried out on the tested specimens, which shows that the maximum hardness of the ceramic coating is higher than that of substrate by a factor of ~3.2. The dimple fracture dominates the final fracture mechanism for the parent material, and the combination of fatigue, ductile fracture and cleavage dominates the final fracture mechanism for the coated material, based on the SEM analyses. EDS tests’ results reveal that the parent material specimen shows higher levels of C at matrix regions along with Fe- and O-rich regions, compared with the coated material specimen.
基金We are grateful for financial support from the National Natural Science Foundation of China(Nos.21702103 and 21522604)the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(No.XTD2203)the Natural Science Research Projects of Jiangsu Higher Education(No.19KJB150027).
文摘A green efficient photoredox-catalyzed decarboxylative alkynylation of carboxylic acids with alkynyl bromides has been developed.This broadly applicable protocol is presented whereinα-amino,aliphatic andα-oxy acids are converted into useful alkynylation products.The commercially-available organic photocatalyst 4CzIPN is used as the photocatalyst,organic base DBU is utilized as the base,and DMSO serves as solvent.This strategy features mild conditions,is metal-free,and is environmentally friendly.The batch and continuous-flow protocols described were applied to obtain a broader substrate scope of functionalization(more than 50 examples).Furthermore,we demonstrate that the use of microflow technology enhanced and intensified the reaction process,achieving significantly reduced reaction times(i.e.,10 min of residence time).