This paper attempts to explore the decoupling relationship and its drivers between industrial economic increase and energy-related CO_(2) emissions(ICE). Firstly, the decoupling relationship was evaluated by Tapio ind...This paper attempts to explore the decoupling relationship and its drivers between industrial economic increase and energy-related CO_(2) emissions(ICE). Firstly, the decoupling relationship was evaluated by Tapio index. Then, based on the DEA meta-frontier theory framework which taking into account the regional and industrial heterogeneity and index decomposition method, the driving factors of decoupling process were explored mainly from the view of technology and efficiency. The results show that during2000-2019, weak decoupling was the primary state. Investment scale expansion was the largest reason hindering decoupling process of industrial increase from ICE. Both energy saving and production technology achieved significant progress, which facilitated the decoupling process. Simultaneously, the energy technology gap and production technology gap among regions have been narrowed, and played a role in promoting decoupling process. On the contrary, both scale economy efficiency and pure technical efficiency have inhibiting effects on decoupling process. The former indicates that the scale economy of China's industry was not conducive to improve energy efficiency and production efficiency, while the latter indicates that resource misallocation problem may exist in both energy market and product market.展开更多
As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perov...As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perovskites are showing the potential to make distinct marks in the fields of electronics,optoelectronics and photonics.The so-called perovskite quantum dots(PQDs)not only possess the most important features of LHP materials,i.e.,the unusual high defect tolerance,but also demonstrate clear quantum size effects,along with exhibiting desirable optoelectronic properties such as near perfect photoluminescent quantum yield,multiple exciton generation and slow hot-carrier cooling.Here,we review the advantageous properties of these nanoscale perovskites and survey the prospects for diverse applications which include lightemitting devices,solar cells,photocatalysts,lasers,detectors and memristors,emphasizing the distinct superiorities as well as the challenges.展开更多
The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to...The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to human cognitive abilities.To study the effect of functional connectivity on the brain dynamics,the dynamic model based on functional connections of the brain and the Hindmarsh–Rose model is utilized in this work.The resting-state fMRI data from the experimental group undergoing abacus-based mental calculation(AMC)training and from the control group are used to construct the functional brain networks.The dynamic behavior of brain at the resting and task states for the AMC group and the control group are simulated with the above-mentioned dynamic model.In the resting state,there are the differences of brain activation between the AMC group and the control group,and more brain regions are inspired in the AMC group.A stimulus with sinusoidal signals to brain networks is introduced to simulate the brain dynamics in the task states.The dynamic characteristics are extracted by the excitation rates,the response intensities and the state distributions.The change in the functional connectivity of brain networks with the AMC training would in turn improve the brain response to external stimulus,and make the brain more efficient in processing tasks.展开更多
Objective This study aimed to investigate the role of the long noncoding RNA(lncRNA)maternally expressed gene 3(MEG3)in the epithelial-mesenchymal transition(EMT)of bladder cancer cells and the potential mechanisms.Me...Objective This study aimed to investigate the role of the long noncoding RNA(lncRNA)maternally expressed gene 3(MEG3)in the epithelial-mesenchymal transition(EMT)of bladder cancer cells and the potential mechanisms.Methods Cell invasion,migration,and wound healing assays were conducted to assess the effects of MEG3 on the invasive and migratory capabilities of bladder cancer cells.The expression levels of E-cadherin were measured using Western blotting,RT-qPCR,and dual luciferase reporter assays.RNA immunoprecipitation and pull-down assays were performed to investigate the interactions between MEG3 and its downstream targets.Results MEG3 suppressed the invasion and migration of bladder cancer cells and modulated the transcription of E-cadherin.The binding of MEG3 to the zinc finger region of the transcription factor Snail prevented its ability to transcriptionally repress E-cadherin.Additionally,MEG3 suppressed the phosphorylation of extracellular regulated protein kinase(ERK),c-Jun N-terminal kinase(JNK),and P38,thereby decreasing the expression of Snail and stimulating the expression of E-cadherin.Conclusion MEG3 plays a vital role in suppressing the EMT in bladder cancer cells,indicating its potential as a promising therapeutic target for the treatment of bladder cancer.展开更多
Morphine is a frequently used analgesic that activates the mu-opioid receptor(MOR),which has prominent side effects of tolerance.Although the inefficiency of morphine in inducing the endocytosis of MOR underlies the d...Morphine is a frequently used analgesic that activates the mu-opioid receptor(MOR),which has prominent side effects of tolerance.Although the inefficiency of morphine in inducing the endocytosis of MOR underlies the development of morphine tolerance,currently,there is no effective therapy to treat morphine tolerance.In the current study,we aimed to develop a monoclonal antibody(mAb)precisely targeting MOR and to determine its therapeutic efficacy on morphine tolerance and the underlying molecular mechanisms.We successfully prepared a mAb targeting MOR,named 3A5C7,by hybridoma technique using a strategy of deoxyribonucleic acid immunization combined with cell immunization,and identified it as an immunoglobulin G mAb with high specificity and affinity for MOR and binding ability to antigens with spatial conformation.Treatment of two cell lines,HEK293T and SH-SY5Y,with 3A5C7 enhanced morphine-induced MOR endocytosis via a G protein-coupled receptor kinase 2(GRK2)/b-arrestin2-dependent mechanism,as demonstrated by immunofluorescence staining,flow cytometry,Western blotting,coimmunoprecipitation,and small interfering ribonucleic acid(siRNA)-based knockdown.This mAb also allowed MOR recycling from cytoplasm to plasma membrane and attenuated morphine-induced phosphorylation of MOR.We established an in vitro morphine tolerance model using differentiated SH-SY5Y cells induced by retinoic acid.Western blot,enzyme-linked immunosorbent assays,and siRNA-based knockdown revealed that 3A5C7 mAb diminished hyperactivation of adenylate cyclase,the in vitro biomarker of morphine tolerance,via the GRK2/b-arrestin2 pathway.Furthermore,in vivo hotplate test demonstrated that chronic intrathecal administration of 3A5C7 significantly alleviated morphine tolerance in mice,and withdrawal jumping test revealed that both chronic and acute 3A5C7 intrathecal administration attenuated morphine dependence.Finally,intrathecal electroporation of silencing short hairpin RNA illustrated that the in vivo anti-tolerance and anti-dependence efficacy of 3A5C7 was mediated by enhanced morphine-induced MOR endocytosis via GRK2/b-arrestin2 pathway.Collectively,our study provided a therapeutic mAb,3A5C7,targeting MOR to treat morphine tolerance,mediated by enhancing morphine-induced MOR endocytosis.The mAb 3A5C7 demonstrates promising translational value to treat clinical morphine tolerance.展开更多
In recent years,deep learning techniques have been used to estimate gaze-a significant task in computer vision and human-computer interaction.Previous studies have made significant achievements in predicting 2D or 3D ...In recent years,deep learning techniques have been used to estimate gaze-a significant task in computer vision and human-computer interaction.Previous studies have made significant achievements in predicting 2D or 3D gazes from monocular face images.This study presents a deep neural network for 2D gaze estimation on mobile devices.It achieves state-of-the-art 2D gaze point regression error,while significantly improving gaze classification error on quadrant divisions of the display.To this end,an efficient attention-based module that correlates and fuses the left and right eye contextual features is first proposed to improve gaze point regression performance.Subsequently,through a unified perspective for gaze estimation,metric learning for gaze classification on quadrant divisions is incorporated as additional supervision.Consequently,both gaze point regression and quadrant classification perfor-mances are improved.The experiments demonstrate that the proposed method outperforms existing gaze-estima-tion methods on the GazeCapture and MPIIFaceGaze datasets.展开更多
To study the influence of thickness on the magnetic properties of ReBCO(Re = Y, Gd, Sm, Nd, etc.) bulk superconductors, a single domain gadolinium barium copper oxide(GdBCO) bulk superconductor fabricated by the Re + ...To study the influence of thickness on the magnetic properties of ReBCO(Re = Y, Gd, Sm, Nd, etc.) bulk superconductors, a single domain gadolinium barium copper oxide(GdBCO) bulk superconductor fabricated by the Re + 011 top seeded infiltration growth(Re + 011 TSIG) method was continuously sliced along the bottom to obtain samples of different thickness. The levitation force and attractive force of these samples were tested at 77 K in the zero-field-cooled(ZFC)state. It is found that as the sample thickness decreases, the levitation force decreases gradually whereas the attractive force increases. This is related to the varied ability to resist the penetration of magnetic field occasioned by varying sample thickness, which are deeply revealed by combining with the characteristics of the non-ideal type-II superconductor. Further,the levitation force exhibits a trend of slow initial change followed by rapid change, which may be attributed to the growth of the sample. Measurement of the trapped field shows that a similar distribution of trapped field at the top and bottom surfaces can be achieved by removing some materials from the bottom of the bulk. These results provide a reference for meeting the actual requirements of ReBCO bulks of different thicknesses and greatly contribute to practical designs and applications.展开更多
BACKGROUND Pediatric-onset systemic lupus erythematosus(SLE)is typically more severe than adult-onset SLE,with a higher incidence of nervous system involvement.Chorea is a relatively rare neurological complication rep...BACKGROUND Pediatric-onset systemic lupus erythematosus(SLE)is typically more severe than adult-onset SLE,with a higher incidence of nervous system involvement.Chorea is a relatively rare neurological complication reported in 2.4%-7%of SLE patients.In particular,chorea induced by glucocorticoid dose reduction is even rarer.Herein,we report the case of a girl with SLE,who developed chorea during the process of glucocorticoid therapy reduction.CASE SUMMARY We describe a 14-year-old girl who was diagnosed with SLE.She was treated with methylprednisolone and rituximab,and her symptoms improved.On the second day after the methylprednisolone dose was reduced according to the treatment guidelines,the patient developed chorea.Her condition improved after adjusting her glucocorticoid regimen.CONCLUSION This case is a reminder that extra attention to chorea is required in SLE patients during glucocorticoid dose reduction.展开更多
V4 is a Gram-negative,plant growth promoting endophytic bacterium that promotes the growth of tea plants.The appearance of V4 is rod shaped,with average dimensions of 1.34−1.5×0.32−0.39μm and flagellum at both e...V4 is a Gram-negative,plant growth promoting endophytic bacterium that promotes the growth of tea plants.The appearance of V4 is rod shaped,with average dimensions of 1.34−1.5×0.32−0.39μm and flagellum at both ends.The complete genome contains one circular chromosome and two plasmids.It is 4,697,109 bp in size,and contains 4,189 protein-coding genes,four gene islands and two prophages.Taxonomic classification suggested that V4 was a strain of Erwinia aphidicola.It was possible to find genes involved in plant growth promotion traits present in the genome of V4.Meanwhile,V4 was consistent with plant growth-promoting endophytic bacteria containing key synthetic genes associated with IAA synthesis,and P-solubilization,siderophores.V4 has siderophore biosynthesis genes compared with plant pathogenic bacteria showing stronger survival ability and the ability to interaction with the host plant.In addition,V4 endophytic bacteria possess a higher copy number of genes for flagellar assembly,bacterial chemotaxis and P-pilus assembly indicating stronger colonization and communication ability with host plants compared with five other bacteria in comparative genomic analysis.Analysis of the V4 endophytic bacterium complete genome sequence provides novel insights into the endophytic bacteria-host plant relationship,and suggests many candidate genes for post-genomic experiments.展开更多
基金financial support from the China Postdoctoral Science Foundation project(No.2023M733253)。
文摘This paper attempts to explore the decoupling relationship and its drivers between industrial economic increase and energy-related CO_(2) emissions(ICE). Firstly, the decoupling relationship was evaluated by Tapio index. Then, based on the DEA meta-frontier theory framework which taking into account the regional and industrial heterogeneity and index decomposition method, the driving factors of decoupling process were explored mainly from the view of technology and efficiency. The results show that during2000-2019, weak decoupling was the primary state. Investment scale expansion was the largest reason hindering decoupling process of industrial increase from ICE. Both energy saving and production technology achieved significant progress, which facilitated the decoupling process. Simultaneously, the energy technology gap and production technology gap among regions have been narrowed, and played a role in promoting decoupling process. On the contrary, both scale economy efficiency and pure technical efficiency have inhibiting effects on decoupling process. The former indicates that the scale economy of China's industry was not conducive to improve energy efficiency and production efficiency, while the latter indicates that resource misallocation problem may exist in both energy market and product market.
基金supported by the National Natural Science Foundation of China(Grant No.52102266,12204167)the China Postdoctoral Science Foundation(2020M680861)+4 种基金the support from the Department of Science and Technology-Science and Engineering Research Board(DST-SERB),Government of India(project no.SRG/2020/000258)CSIR-Indian Institute of Chemical Technology,Hyderabadsupported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1A5A1032539,2022R1C1C1008282)Industrial Strategic Technology Development Program-Alchemist Project(1415180859,Chiral perovskite LED smart contact lens based hyper vision metaverse)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)Korea Evaluation Institute of Industrial Technology(KEIT,Korea).
文摘As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perovskites are showing the potential to make distinct marks in the fields of electronics,optoelectronics and photonics.The so-called perovskite quantum dots(PQDs)not only possess the most important features of LHP materials,i.e.,the unusual high defect tolerance,but also demonstrate clear quantum size effects,along with exhibiting desirable optoelectronic properties such as near perfect photoluminescent quantum yield,multiple exciton generation and slow hot-carrier cooling.Here,we review the advantageous properties of these nanoscale perovskites and survey the prospects for diverse applications which include lightemitting devices,solar cells,photocatalysts,lasers,detectors and memristors,emphasizing the distinct superiorities as well as the challenges.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62276229 and 32071096).
文摘The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to human cognitive abilities.To study the effect of functional connectivity on the brain dynamics,the dynamic model based on functional connections of the brain and the Hindmarsh–Rose model is utilized in this work.The resting-state fMRI data from the experimental group undergoing abacus-based mental calculation(AMC)training and from the control group are used to construct the functional brain networks.The dynamic behavior of brain at the resting and task states for the AMC group and the control group are simulated with the above-mentioned dynamic model.In the resting state,there are the differences of brain activation between the AMC group and the control group,and more brain regions are inspired in the AMC group.A stimulus with sinusoidal signals to brain networks is introduced to simulate the brain dynamics in the task states.The dynamic characteristics are extracted by the excitation rates,the response intensities and the state distributions.The change in the functional connectivity of brain networks with the AMC training would in turn improve the brain response to external stimulus,and make the brain more efficient in processing tasks.
基金supported by the National Natural Science Foundation of China(Nos.82273443,81602234 and 81802538)the Natural Science Foundation of Hubei Province(Nos.2017CFB637 and 2023AFB1041).
文摘Objective This study aimed to investigate the role of the long noncoding RNA(lncRNA)maternally expressed gene 3(MEG3)in the epithelial-mesenchymal transition(EMT)of bladder cancer cells and the potential mechanisms.Methods Cell invasion,migration,and wound healing assays were conducted to assess the effects of MEG3 on the invasive and migratory capabilities of bladder cancer cells.The expression levels of E-cadherin were measured using Western blotting,RT-qPCR,and dual luciferase reporter assays.RNA immunoprecipitation and pull-down assays were performed to investigate the interactions between MEG3 and its downstream targets.Results MEG3 suppressed the invasion and migration of bladder cancer cells and modulated the transcription of E-cadherin.The binding of MEG3 to the zinc finger region of the transcription factor Snail prevented its ability to transcriptionally repress E-cadherin.Additionally,MEG3 suppressed the phosphorylation of extracellular regulated protein kinase(ERK),c-Jun N-terminal kinase(JNK),and P38,thereby decreasing the expression of Snail and stimulating the expression of E-cadherin.Conclusion MEG3 plays a vital role in suppressing the EMT in bladder cancer cells,indicating its potential as a promising therapeutic target for the treatment of bladder cancer.
基金supported by the National Basic Research Program of China(Grant No.:2015CB553701)the National Science and Technology Major Project,China(Grant No.:2019ZX09732001).
文摘Morphine is a frequently used analgesic that activates the mu-opioid receptor(MOR),which has prominent side effects of tolerance.Although the inefficiency of morphine in inducing the endocytosis of MOR underlies the development of morphine tolerance,currently,there is no effective therapy to treat morphine tolerance.In the current study,we aimed to develop a monoclonal antibody(mAb)precisely targeting MOR and to determine its therapeutic efficacy on morphine tolerance and the underlying molecular mechanisms.We successfully prepared a mAb targeting MOR,named 3A5C7,by hybridoma technique using a strategy of deoxyribonucleic acid immunization combined with cell immunization,and identified it as an immunoglobulin G mAb with high specificity and affinity for MOR and binding ability to antigens with spatial conformation.Treatment of two cell lines,HEK293T and SH-SY5Y,with 3A5C7 enhanced morphine-induced MOR endocytosis via a G protein-coupled receptor kinase 2(GRK2)/b-arrestin2-dependent mechanism,as demonstrated by immunofluorescence staining,flow cytometry,Western blotting,coimmunoprecipitation,and small interfering ribonucleic acid(siRNA)-based knockdown.This mAb also allowed MOR recycling from cytoplasm to plasma membrane and attenuated morphine-induced phosphorylation of MOR.We established an in vitro morphine tolerance model using differentiated SH-SY5Y cells induced by retinoic acid.Western blot,enzyme-linked immunosorbent assays,and siRNA-based knockdown revealed that 3A5C7 mAb diminished hyperactivation of adenylate cyclase,the in vitro biomarker of morphine tolerance,via the GRK2/b-arrestin2 pathway.Furthermore,in vivo hotplate test demonstrated that chronic intrathecal administration of 3A5C7 significantly alleviated morphine tolerance in mice,and withdrawal jumping test revealed that both chronic and acute 3A5C7 intrathecal administration attenuated morphine dependence.Finally,intrathecal electroporation of silencing short hairpin RNA illustrated that the in vivo anti-tolerance and anti-dependence efficacy of 3A5C7 was mediated by enhanced morphine-induced MOR endocytosis via GRK2/b-arrestin2 pathway.Collectively,our study provided a therapeutic mAb,3A5C7,targeting MOR to treat morphine tolerance,mediated by enhancing morphine-induced MOR endocytosis.The mAb 3A5C7 demonstrates promising translational value to treat clinical morphine tolerance.
基金the National Natural Science Foundation of China,No.61932003and the Fundamental Research Funds for the Central Universities.
文摘In recent years,deep learning techniques have been used to estimate gaze-a significant task in computer vision and human-computer interaction.Previous studies have made significant achievements in predicting 2D or 3D gazes from monocular face images.This study presents a deep neural network for 2D gaze estimation on mobile devices.It achieves state-of-the-art 2D gaze point regression error,while significantly improving gaze classification error on quadrant divisions of the display.To this end,an efficient attention-based module that correlates and fuses the left and right eye contextual features is first proposed to improve gaze point regression performance.Subsequently,through a unified perspective for gaze estimation,metric learning for gaze classification on quadrant divisions is incorporated as additional supervision.Consequently,both gaze point regression and quadrant classification perfor-mances are improved.The experiments demonstrate that the proposed method outperforms existing gaze-estima-tion methods on the GazeCapture and MPIIFaceGaze datasets.
基金supported by the National Natural Science Foundation of China (Grant No. 52072229)the Key-grant Project of the Ministry of Education of China (Grant No. 311033)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. GK201706001)the Teaching Reform and Innovation Project of Higher Education in Shanxi Province, China (Grant No. J2021719)。
文摘To study the influence of thickness on the magnetic properties of ReBCO(Re = Y, Gd, Sm, Nd, etc.) bulk superconductors, a single domain gadolinium barium copper oxide(GdBCO) bulk superconductor fabricated by the Re + 011 top seeded infiltration growth(Re + 011 TSIG) method was continuously sliced along the bottom to obtain samples of different thickness. The levitation force and attractive force of these samples were tested at 77 K in the zero-field-cooled(ZFC)state. It is found that as the sample thickness decreases, the levitation force decreases gradually whereas the attractive force increases. This is related to the varied ability to resist the penetration of magnetic field occasioned by varying sample thickness, which are deeply revealed by combining with the characteristics of the non-ideal type-II superconductor. Further,the levitation force exhibits a trend of slow initial change followed by rapid change, which may be attributed to the growth of the sample. Measurement of the trapped field shows that a similar distribution of trapped field at the top and bottom surfaces can be achieved by removing some materials from the bottom of the bulk. These results provide a reference for meeting the actual requirements of ReBCO bulks of different thicknesses and greatly contribute to practical designs and applications.
基金This study was conducted with the approval of the ethics committee of Chongqing Hospital of Traditional Chinese Medicine(approval No.2023-GAKY-KS-XYQ).The patient gave explicit informed consent to report her clinical case.
文摘BACKGROUND Pediatric-onset systemic lupus erythematosus(SLE)is typically more severe than adult-onset SLE,with a higher incidence of nervous system involvement.Chorea is a relatively rare neurological complication reported in 2.4%-7%of SLE patients.In particular,chorea induced by glucocorticoid dose reduction is even rarer.Herein,we report the case of a girl with SLE,who developed chorea during the process of glucocorticoid therapy reduction.CASE SUMMARY We describe a 14-year-old girl who was diagnosed with SLE.She was treated with methylprednisolone and rituximab,and her symptoms improved.On the second day after the methylprednisolone dose was reduced according to the treatment guidelines,the patient developed chorea.Her condition improved after adjusting her glucocorticoid regimen.CONCLUSION This case is a reminder that extra attention to chorea is required in SLE patients during glucocorticoid dose reduction.
基金supported by the Natural Science Foundation of Anhui Province,Outstanding Youth Project(2008085J18)National Natural Science Foundation of China(NSFC,Grant No.31870679).
文摘V4 is a Gram-negative,plant growth promoting endophytic bacterium that promotes the growth of tea plants.The appearance of V4 is rod shaped,with average dimensions of 1.34−1.5×0.32−0.39μm and flagellum at both ends.The complete genome contains one circular chromosome and two plasmids.It is 4,697,109 bp in size,and contains 4,189 protein-coding genes,four gene islands and two prophages.Taxonomic classification suggested that V4 was a strain of Erwinia aphidicola.It was possible to find genes involved in plant growth promotion traits present in the genome of V4.Meanwhile,V4 was consistent with plant growth-promoting endophytic bacteria containing key synthetic genes associated with IAA synthesis,and P-solubilization,siderophores.V4 has siderophore biosynthesis genes compared with plant pathogenic bacteria showing stronger survival ability and the ability to interaction with the host plant.In addition,V4 endophytic bacteria possess a higher copy number of genes for flagellar assembly,bacterial chemotaxis and P-pilus assembly indicating stronger colonization and communication ability with host plants compared with five other bacteria in comparative genomic analysis.Analysis of the V4 endophytic bacterium complete genome sequence provides novel insights into the endophytic bacteria-host plant relationship,and suggests many candidate genes for post-genomic experiments.
文摘目的动脉瘤性蛛网膜下腔出血(aneurysmal subarachnoid hemorrhage,aSAH)后凝血功能异常影响患者预后。探讨aSAH首日患者凝血功能变化,并分析其与反映意识障碍程度的相关性。为重症aSAH患者首日精细化管理提供参考。方法40例发病24 h内入住神经重症监护室的aSAH患者,与20例年龄、性别相匹配的健康对照组进行比较。对血栓弹力图(thrombelastography,TEG)结果、GCS评分进行分析;根据入院时GCS评分进行亚组分析,比较GCS≤7和GCS>7亚组TEG各项结果;并分析其与GCS的相关性。结果与对照组比较,aSAH患者首日反应凝血因子功能的TEG-R值明显降低(4.18±1.54 vs 6.61±0.95,P=0.001);纤溶系统(LY30、EPL)和其他指标(MA、K、Angel)、常规凝血功能差异无统计学意义(P>0.05)。GCS≤7亚组较GCS>7亚组TEG-R值也明显降低(3.32±1.04 vs 5.24±1.41,P<0.001),且TEG-R与GCS评分具有相关性(r=0.551,P<0.001)。结论aSAH首日患者凝血因子功能增强的高凝状态,尤其是GCS≤7的患者,且与GCS高度相关;但纤溶系统无明显变化。