In this paper the Delaware Method published in 1963 is analyzed and upgraded with using correction factors which take into account the undesirable currents of the mean flow. However, this method presents graphically t...In this paper the Delaware Method published in 1963 is analyzed and upgraded with using correction factors which take into account the undesirable currents of the mean flow. However, this method presents graphically these correction factors which imply an impediment to fulfill the software calculations. Thus, the equations corresponding to the correction factor equations and a Fortran 77 numerical program were established. This system is given to explore different design alternatives in order to find the optimal solution to each proposed problem. The results of this work was a simple software that can perform calculations with the introduction of parameters depending only on the geometry of the heat exchanger, i.e., geometry, temperature and fluid characteristics eliminating the human errors and increasing the calculations speed and accuracy.展开更多
In this study an energy and exergy analysis is made of moist air, it is used the psychometrics charts. A Visual Basic program is used to generate psychometrics charts. These charts are used to analyze the air thermody...In this study an energy and exergy analysis is made of moist air, it is used the psychometrics charts. A Visual Basic program is used to generate psychometrics charts. These charts are used to analyze the air thermodynamic behavior, considering the environmental variations, pressure, temperature and relative humidity. Also, the available energy in the cooling processes at constant enthalpy, humidification at constant temperature and heating with constant relative humidity is analyzed. For example, we obtained that the enthalpy and exergy in a thermodynamic state, with conditions, Patm = 1.013 bar, Tatm = 25oC and Φatm=50%, are h = 50.56 kJ/kga and ε =11.5 kJ/kga;and for Patm= 0.77 bar to the same conditions of Tatm and Φatm, the enthalpy and exergy increases in a 14% and 20%, respectively.展开更多
Different experiments in high speed turbomachines require expensive and sophisticated infrastructure to implement their impulsion and reach high regimes. In developed countries, this can be achieved by using aeroderiv...Different experiments in high speed turbomachines require expensive and sophisticated infrastructure to implement their impulsion and reach high regimes. In developed countries, this can be achieved by using aeroderivative gas turbines or DC motors of about 400 HP. This paper presents an experimental system designed and built with the intention of performing behavior studies in test turbomachinery. The proposed installation uses compressed air as driving fluid, which allows the turbomachinery to reach high rotational speeds where very important phenomena occur. An analysis is carried out considering the rotational speed behavior of an internal combustion engine turbocharger of the Perkins series when it is driven by pressures ranging from 4.2 kg/cm2 to zero. Additionally, another experiment couples an automotive electrical generator with the turbine to observe the system operation when a load is applied. The behavior of the pressure is analyzed when it is in function of the time of air discharge that goes from a compressed air storage tank to the turbocharger for its impulsion. This is an experimental system that can be designed and constructed economically within the bounds of any public university.展开更多
The purpose of this paper is to analyze the flow field on the propulsion nozzle of a micro-turbojet engine in function of the velocity. The 2D axisymmetric numerical simulation was made by using commercial software FL...The purpose of this paper is to analyze the flow field on the propulsion nozzle of a micro-turbojet engine in function of the velocity. The 2D axisymmetric numerical simulation was made by using commercial software FLUENT?. A micro-turbojet engine was also employed for this study and it has the following characteristics: 100 N thrust, 130,000 rpm, mass flow rate 0.2650 kg/s, weight 1.2 kg. This engine is operating in Mexico city under the following conditions: P0, 78,000 Pa T0, 300 K, πc, 2.1 and a turbine entry temperature of 1000 K;it is considered that the nozzle is not choked. For this study, the viscous standard k- model, a semi-empirical model based on transport model equations for the turbulent kinetic energy (k) and its dissipation rate, is used. The transport model equation for k is derived from the ex-act equation, while the transport model equation for is obtained by using physical reasoning and bears resemblance to its mathematically exact counterpart. The employed grids are structured and the boundary conditions are obtained from a thermodynamic analysis. The results that are obtained show an increment of the velocity of 6.25% to the exit propulsion nozzle.展开更多
文摘In this paper the Delaware Method published in 1963 is analyzed and upgraded with using correction factors which take into account the undesirable currents of the mean flow. However, this method presents graphically these correction factors which imply an impediment to fulfill the software calculations. Thus, the equations corresponding to the correction factor equations and a Fortran 77 numerical program were established. This system is given to explore different design alternatives in order to find the optimal solution to each proposed problem. The results of this work was a simple software that can perform calculations with the introduction of parameters depending only on the geometry of the heat exchanger, i.e., geometry, temperature and fluid characteristics eliminating the human errors and increasing the calculations speed and accuracy.
文摘In this study an energy and exergy analysis is made of moist air, it is used the psychometrics charts. A Visual Basic program is used to generate psychometrics charts. These charts are used to analyze the air thermodynamic behavior, considering the environmental variations, pressure, temperature and relative humidity. Also, the available energy in the cooling processes at constant enthalpy, humidification at constant temperature and heating with constant relative humidity is analyzed. For example, we obtained that the enthalpy and exergy in a thermodynamic state, with conditions, Patm = 1.013 bar, Tatm = 25oC and Φatm=50%, are h = 50.56 kJ/kga and ε =11.5 kJ/kga;and for Patm= 0.77 bar to the same conditions of Tatm and Φatm, the enthalpy and exergy increases in a 14% and 20%, respectively.
文摘Different experiments in high speed turbomachines require expensive and sophisticated infrastructure to implement their impulsion and reach high regimes. In developed countries, this can be achieved by using aeroderivative gas turbines or DC motors of about 400 HP. This paper presents an experimental system designed and built with the intention of performing behavior studies in test turbomachinery. The proposed installation uses compressed air as driving fluid, which allows the turbomachinery to reach high rotational speeds where very important phenomena occur. An analysis is carried out considering the rotational speed behavior of an internal combustion engine turbocharger of the Perkins series when it is driven by pressures ranging from 4.2 kg/cm2 to zero. Additionally, another experiment couples an automotive electrical generator with the turbine to observe the system operation when a load is applied. The behavior of the pressure is analyzed when it is in function of the time of air discharge that goes from a compressed air storage tank to the turbocharger for its impulsion. This is an experimental system that can be designed and constructed economically within the bounds of any public university.
文摘The purpose of this paper is to analyze the flow field on the propulsion nozzle of a micro-turbojet engine in function of the velocity. The 2D axisymmetric numerical simulation was made by using commercial software FLUENT?. A micro-turbojet engine was also employed for this study and it has the following characteristics: 100 N thrust, 130,000 rpm, mass flow rate 0.2650 kg/s, weight 1.2 kg. This engine is operating in Mexico city under the following conditions: P0, 78,000 Pa T0, 300 K, πc, 2.1 and a turbine entry temperature of 1000 K;it is considered that the nozzle is not choked. For this study, the viscous standard k- model, a semi-empirical model based on transport model equations for the turbulent kinetic energy (k) and its dissipation rate, is used. The transport model equation for k is derived from the ex-act equation, while the transport model equation for is obtained by using physical reasoning and bears resemblance to its mathematically exact counterpart. The employed grids are structured and the boundary conditions are obtained from a thermodynamic analysis. The results that are obtained show an increment of the velocity of 6.25% to the exit propulsion nozzle.