Background:The use of industrial by-products rich in bioactive compounds as animal feeds can reduce greenhouse gas production.Paulownia leaves silage(PLS)was supplemented to dairy cows'diet and evaluated in vitro(...Background:The use of industrial by-products rich in bioactive compounds as animal feeds can reduce greenhouse gas production.Paulownia leaves silage(PLS)was supplemented to dairy cows'diet and evaluated in vitro(Exp.1;Rusitec)and in vivo(Exp.2,cannulated lactating dairy cows and Exp.3,non-cannulated lactating dairy cows).The study investigated the PLS effect on ruminal fermentation,microbial populations,methane production and concentration,dry matter intake(DMI),and fatty acid(FA)proportions in ruminal fluid and milk.Results:Several variables of the ruminal fluid were changed in response to the inclusion of PLS.In Exp.1,the p H increased linearly and quadratically,whereas ammonia and total volatile fatty acid(VFA)concentrations increased linearly and cubically.A linear,quadratic,and cubical decrease in methane concentration was observed with increasing dose of the PLS.Exp.2 revealed an increase in ruminal p H and ammonia concentrations,but no changes in total VFA concentration.Inclusion of PLS increased ruminal propionate(at 3 h and 6 h after feeding),isovalerate,and valerate concentrations.Addition of PLS also affected several populations of the analyzed microorganisms.The abundances of protozoa and bacteria were increased,whereas the abundance of archaea were decreased by PLS.Methane production decreased by 11%and 14%in PLS-fed cows compared to the control in Exp.2 and 3,respectively.Exp.3 revealed a reduction in the milk protein and lactose yield in the PLS-fed cows,but no effect on DMI and energy corrected milk yield.Also,the PLS diet affected the ruminal biohydrogenation process with an increased proportions of C18:3 cis-9 cis-12 cis-15,conjugated linoleic acid,C18:1 trans-11 FA,polyunsaturated fatty acids(PUFA),and reduced n6/n3 ratio and saturated fatty acids(SFA)proportion in milk.The relative transcript abundances of the 5 of 6 analyzed genes regulating FA metabolism increased.Conclusions:The dietary PLS replacing the alfalfa silage at 60 g/kg diet can reduce the methane emission and improve milk quality with greater proportions of PUFA,including conjugated linoleic acid,and C18:1 trans-11 along with reduction of SFA.展开更多
The GECAM series of satellites utilizes LaBr_(3)(Ce),LaBr_(3)(Ce,Sr),and NaI(Tl)crystals as sensitive materials for gamma-ray detectors(GRDs).To investigate the nonlinearity in the detection of low-energy gamma rays a...The GECAM series of satellites utilizes LaBr_(3)(Ce),LaBr_(3)(Ce,Sr),and NaI(Tl)crystals as sensitive materials for gamma-ray detectors(GRDs).To investigate the nonlinearity in the detection of low-energy gamma rays and address the errors in the calibration of the E-C relationship,comprehensive tests and comparative studies of the three aforementioned crystals were conducted using Compton electrons,radioactive sources,and mono-energetic X-rays.The nonlinearity test results of the Compton electrons and X-rays demonstrated substantial differences,with all three crystals presenting a higher nonlinearity for X/-rays than for Compton electrons.Despite the LaBr_(3)(Ce)and LaBr_(3)(Ce,Sr)crystals having higher absolute light yields,they exhibited a noticeable nonlinear decrease in the light yield,especially at energies below 400 keV.The NaI(Tl)crystal demonstrated an"excess"light output in the 6-200 keV range,reaching a maximum"excess"of 9.2%at 30 keV in the X-ray testing and up to 15.5%at 14 keV during Compton electron testing,indicating a significant advantage in the detection of low-energy gamma rays.Furthermore,we explored the underlying causes of the observed nonlinearity in these crystals.This study not only elucidates the detector responses of GECAM,but also initiates a comprehensive investigation of the nonlinearity of domestically produced lanthanum bromide and sodium iodide crystals.展开更多
Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has b...Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has been widely used for all-sky gamma-ray monitors.There are two major methods for this count distribution localization:χ^(2)minimization method and the Bayesian method.Here we propose a modified Bayesian method that could take advantage of both the accuracy of the Bayesian method and the simplicity of the χ^(2)method.With comprehensive simulations,we find that our Bayesian method with Poisson likelihood is generally more applicable for various bursts than the χ^(2)method,especially for weak bursts.We further proposed a location-spectrum iteration approach based on the Bayesian inference,which could alleviate the problems caused by the spectral difference between the burst and location templates.Our method is very suitable for scenarios with limited computation resources or timesensitive applications,such as in-flight localization software,and low-latency localization for rapidly follow-up observations.展开更多
Realtime trigger and localization of bursts are the key functions of GECAM,an all-sky gamma-ray monitor launched on 2020 December 10.We developed a multifunctional trigger and localization software operating in the CP...Realtime trigger and localization of bursts are the key functions of GECAM,an all-sky gamma-ray monitor launched on 2020 December 10.We developed a multifunctional trigger and localization software operating in the CPU of the GECAM Electronic Box.This onboard software has the following features:high trigger efficiency for real celestial bursts with a suppression of false triggers caused by charged particle bursts and background fluctuation,dedicated localization algorithm optimized for both short and long bursts,and low time latency of the trigger information which is downlinked through the Global Short Message Communication service of the global BeiDou navigation system.This paper provides a detailed description of the design and development of the trigger and localization software system for GECAM.It covers the general design,workflow,the main functions,and the algorithms used in the system.The paper also includes on-ground trigger tests using simulated gamma-ray bursts generated by a dedicated X-ray tube,as well as an overview of the performance for real celestial bursts during its in-orbit operation.展开更多
As the main byproduct of cotton production,cottonseed yields edible vegetable oil,ruminant feed,and industrial products.We evaluated the individual and interactive effects of elevated air temperature and soil drought ...As the main byproduct of cotton production,cottonseed yields edible vegetable oil,ruminant feed,and industrial products.We evaluated the individual and interactive effects of elevated air temperature and soil drought on cottonseed yield and nutritional quality using two cotton cultivars,Sumian 15(heat-susceptible)and PHY370 WR(heat-tolerant).The experiment was conducted under three levels of soil relative water content(SRWC):(75±5)%,(60±5)%and(45±5)%and two temperature regimes:ambient temperature(AT,31.0/26.4℃,mean daytime/night temperature)and elevated temperature(ET,33.4/28.9℃).Cottonseed yield,boll number,seed number,and single-seed weight were lower under combined ET and SRWC(45±5)%than either individual stress or combined stresses in comparison with the control treatment(SRWC(75±5)%under AT).Drought tended to increase oil content and reduce protein content,whereas ET showed almost the opposite effects.Under the combination of ET and soil drought,oil content was still higher than under control,although ET weakened the beneficial effects of drought.For protein,ET offset the negative impacts of mild drought on protein content,but protein content was not increased under SRWC(45±5)%.Each stress or combined stress reduced oil and protein yields under all treatments,owing to declines in cottonseed yields.The combined stress reduced unsaturated fatty acid(UFA)/saturated fatty acid(SFA)and essential amino acid(EAA)/non-essential amino acid(NAA).Compared with PHY370 WR,the sensitivity of Sumian 15 to the combined factors was evidenced in the following ways:(1)seed yield,yield components,oil and protein yields were decreased more for Sumian 15 than PHY370 WR compared with the control treatment;(2)the combined stresses caused lower oil content,UFA,and UFA/SFA in Sumian 15 than PHY370 WR;(3)interaction effects of the combined factors on protein content and EAA/NAA were detected only in Sumian 15.展开更多
Doublet luminescence from hybrid metal trihalide perovskite semiconductors is observed along with materials processing when high-quality single crystals are obtainable.Yet,the underlying physical mechanism remains poo...Doublet luminescence from hybrid metal trihalide perovskite semiconductors is observed along with materials processing when high-quality single crystals are obtainable.Yet,the underlying physical mechanism remains poorly understood.Here,we report controllable solution-processed crystallization that affords high-quality CH3 NH3 PbBr3 single crystals with atomically flat pristine surfaces.Front-face photoluminescence(PL)shows doublet luminescence components with variable relative intensities depending on the crystal surface conditions.We further find that the low-energy PL component with asymmetric spectral line-shape becomes predominant when the atomically flat crystal surfaces are passivated in the ion-abundant saturated solutions,while poor-quality single crystal with visually rough surface only gives the high-energy PL with symmetric line-shape.The asymmetric spectral line-shape of the low-energy PL matches perfectly with the simulated bandedge emission.Therefore,the low-energy PL component is attributable to the intrinsic bandedge emission from the crystal bulk while the high-energy one to surface-specific emission.Elliott fitting to the absorption data and multi-exponential fitting to the time-resolved photoluminescence traces jointly indicate the coexistence of excitons and electron-hole plasmas in optically excited CH_(3)NH_(3)PbBr_(3)single crystals,thereby catching the physical merit that leads to the occurrence of doublet luminescence.展开更多
We present the observational results from a detailed timing analysis of the black hole candidate EXO 1846-031 during its outburst in 2019 with the observations of Insight-HXMT,NICER and MAXI.This outburst can be class...We present the observational results from a detailed timing analysis of the black hole candidate EXO 1846-031 during its outburst in 2019 with the observations of Insight-HXMT,NICER and MAXI.This outburst can be classified roughly into four different states.Type-C quasi-periodic oscillations(QPOs)observed by NICER(about 0.1-6 Hz)and Insight-HXMT(about 0.7-8 Hz)are also reported in this work.Meanwhile,we study various physical quantities related to QPO frequency.The QPO rms-frequency relationship in the energy band 1-10 keV indicates that there is a turning pointing in frequency around2 Hz,which is similar to that of GRS 1915+105.A possible hypothesis for the relationship above may be related to the inclination of the source,which may require a high inclination to explain it.The relationships between QPO frequency and QPO rms,hardness,total fractional rms and count rate have also been found in other transient sources,which can indicate that the origin of type-C QPOs is non-thermal.展开更多
AIM:To illustrate the underlying mechanism how prominin-1(also known as Prom1)mutation contribute to progressive photoreceptor degeneration.METHODS:A CRISPR-mediated Prom1 knockout(Prom1-KO)mice model in the C57BL/6 w...AIM:To illustrate the underlying mechanism how prominin-1(also known as Prom1)mutation contribute to progressive photoreceptor degeneration.METHODS:A CRISPR-mediated Prom1 knockout(Prom1-KO)mice model in the C57BL/6 was generated and the photoreceptor degeneration phenotypes by means of structural and functional tests were demonstrated.Immunohistochemistry and immunoblot analysis were performed to reveal the localization and quantity of related outer segment(OS)proteins.RESULTS:The Prom1-KO mice developed the photoreceptor degeneration phenotype including the decreased outer nuclear layer(ONL)thickness and compromised electroretinogram amplitude.Immunohistochemistry analysis revealed impaired trafficking of photoreceptor OS proteins.Immunoblot data demonstrated decreased photoreceptor OS proteins.CONCLUSION:Prom1 deprivation causes progressive photoreceptor degeneration.Prom1 is essential for maintaining normal trafficking and normal quantity of photoreceptor OS proteins.The new light is shed on the pathogenic mechanism underlying photoreceptor degeneration caused by Prom1 mutation.展开更多
To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavio...To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavior,including 5%state of charge(SOC)with small current overcharge and resting until the temperature equilibrium under adiabatic conditions.The intrinsic thermal response and the self-excitation behaviour are analysed through temperature and voltage changes during the step overcharge period.Experimental results show that the deintercalated state of the cathode is highly correlated to self-heating parasitic reactions.Before reaching the upper limit of Negative/Positive(N/P)ratio,the temperature changes little,the heat generation is significantly induced by the reversible heat(endothermic)and ohmic heat,which could balance each other.Following that the lithium metal is gradually deposited on the surface of the anode and reacts with electrolyte upon overcharge,inducing selfheating side reaction.However,this spontaneous thermal reaction could be“self-extinguished”.When the lithium in cathode is completely deintercalated,the boundary point of overcharge is about 4.7 V(~148%SOC,>40℃),and from this point,the self-heating behaviour could be continuously triggered until thermal runaway(TR)without additional overcharge.The whole static and spontaneous process lasts for 115 h and the side reaction heat is beyond 320,000 J.The continuous self-excitation behavior inside the battery is attributed to the interaction between the highly oxidized cathode and the solvent,which leads to the dissolution of metal ions.The dissolved metal ions destroy the SEI(solid electrolyte interphase)film on the surface of the deposited Li of anode,which induces the thermal reaction between lithium metal and the solvent.The interaction between cathode,the deposited Li of anode,and solvent promotes the temperature of the battery to rise slowly.When the temperature of the battery reaches more than 60℃,the reaction between lithium metal and solvent is accelerated.After the temperature rises rapidly to the melting point of the separator,it triggers the thermal runaway of the battery due to the short circuit of the battery.展开更多
Natural rock joint permeability deviates from the classic fluid flow governing equations due to the inher-ent fracture surface roughness(i.e.,contact points,spatial correlation,matching,varying aperture,iso-lated void...Natural rock joint permeability deviates from the classic fluid flow governing equations due to the inher-ent fracture surface roughness(i.e.,contact points,spatial correlation,matching,varying aperture,iso-lated voids,infilling material,tortuosity and channellings)and engineering disturbance such as excavations.To improve the accuracy of fracture permeability evaluation,many efforts have been made in analytical,experimental,and numerical methods.This study reviews the modified mathematical gov-erning equations of fluid flow and classifies them based on different influencing factors,such as friction factor,aperture,tortuosity,inertia,and various in situ stress effects.Various experimental and simulation techniques for the coupled normal-and shear-stress flow problems were assessed,and their advantages and disadvantages were also analysed.Furthermore,different surface roughness descriptions and their impacts on mechanical and hydraulic behaviours were discussed,followed by the potential research directions for fracture flow problems.展开更多
BACKGROUND Small intestinal vascular malformations(angiodysplasias)are common causes of small intestinal bleeding.While capsule endoscopy has become the primary diagnostic method for angiodysplasia,manual reading of t...BACKGROUND Small intestinal vascular malformations(angiodysplasias)are common causes of small intestinal bleeding.While capsule endoscopy has become the primary diagnostic method for angiodysplasia,manual reading of the entire gastrointestinal tract is time-consuming and requires a heavy workload,which affects the accuracy of diagnosis.AIM To evaluate whether artificial intelligence can assist the diagnosis and increase the detection rate of angiodysplasias in the small intestine,achieve automatic disease detection,and shorten the capsule endoscopy(CE)reading time.METHODS A convolutional neural network semantic segmentation model with a feature fusion method,which automatically recognizes the category of vascular dysplasia under CE and draws the lesion contour,thus improving the efficiency and accuracy of identifying small intestinal vascular malformation lesions,was proposed.Resnet-50 was used as the skeleton network to design the fusion mechanism,fuse the shallow and depth features,and classify the images at the pixel level to achieve the segmentation and recognition of vascular dysplasia.The training set and test set were constructed and compared with PSPNet,Deeplab3+,and UperNet.RESULTS The test set constructed in the study achieved satisfactory results,where pixel accuracy was 99%,mean intersection over union was 0.69,negative predictive value was 98.74%,and positive predictive value was 94.27%.The model parameter was 46.38 M,the float calculation was 467.2 G,and the time length to segment and recognize a picture was 0.6 s.CONCLUSION Constructing a segmentation network based on deep learning to segment and recognize angiodysplasias lesions is an effective and feasible method for diagnosing angiodysplasias lesions.展开更多
Cassava is a crucial crop that makes a significant contribution to ensuring human food security.However,high-quality telomere-totelomere cassava genomes have not been available up to now,which has restricted the progr...Cassava is a crucial crop that makes a significant contribution to ensuring human food security.However,high-quality telomere-totelomere cassava genomes have not been available up to now,which has restricted the progress of haploid molecular breeding for cassava.In this study,we constructed two nearly complete haploid resolved genomes and an integrated,telomere-to-telomere gap-free reference genome of an excellent cassava variety,‘Xinxuan 048’,thereby providing a new high-quality genomic resource.Furthermore,the evolutionary history of several species within the Euphorbiaceae family was revealed.Through comparative analysis of haploid genomes,it was found that two haploid genomes had extensive differences in linear structure,transcriptome features,and epigenetic characteristics.Genes located within the highly divergent regions and differentially expressed alleles are enriched in the functions of auxin response and the starch synthesis pathway.The high heterozygosity of cassava‘Xinxuan 048’leads to rapid trait segregation in the first selfed generation.This study provides a theoretical basis and genomic resource for molecular breeding of cassava haploids.展开更多
Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxid...Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxide(CO_(2)),methane(CH_(4))and nitrous oxide(N_(2)O).Understanding how SLR influences GHG emissions is critical for evaluating mangrove blue carbon capability.In this study,potential effects of SLR on the GHG emissions were quantified through static closed chamber technique among three sites under different intertidal elevations,representing tidal flooding situation of SLR values of 0 cm,40 cm and 80 cm,respectively.Compared with Site SLR 0 cm,annual CO_(2) and N_(2)O fluxes decreased by approximately 75.0%and 27.3%due to higher soil water content,lower salinity and soil nutrient environments at Site SLR 80 cm.However,CH_(4) fluxes increased by approximately 13.7%at Site SLR 40 cm and 8.8%at Site SLR 80 cm because of lower salinity,higher soil water content and soil pH.CO_(2)-equivalent fluxes were 396.61 g/(m^(2)·a),1423.29 g/(m^(2)·a)and 1420.21 g/(m^(2)·a)at Sites SLR 80 cm,SLR 40 cm and SLR 0 cm,respectively.From Site SLR 0 cm to Site SLR 80 cm,contribution rate of N_(2)O and CH_(4) increased by approximately 7.42%and 3.02%,while contribution rate of CO_(2) decreased by approximately 10.44%.The results indicated that warming potential of trace CH_(4) and N_(2)O was non-negligible with SLR.Potential effects of SLR on the mangrove blue carbon capability should warrant attention due to changes of all three greenhouse gas fluxes with SLR.展开更多
Cytokinins are members of a group of phytohormones involved in various growth and developmental processes in plants.Isopentenyl transferase(IPT)is the rate-limiting enzyme in catalyzing the biosynthesis of cytokinins....Cytokinins are members of a group of phytohormones involved in various growth and developmental processes in plants.Isopentenyl transferase(IPT)is the rate-limiting enzyme in catalyzing the biosynthesis of cytokinins.In this study,to understand the role of IPT family in cold resistance,78 IPT candidates were identified and characterized in nine Rosaceae genomes.The expansion of IPT families in the Rosaceae primarily occurred through segmental duplication rather than tandem duplication.In general,purifying selection controlled the evolution of IPT families in the Rosaceae,with IPT3 and IPT5 homologs as the primary drivers of evolution.Cis-elements,which are involved in the responses to many environmental stresses or phytohormone signals,were identified in the promoters of MdIPT members.This was consistent with the trends of expression of the MdIPT genes in apple(Malus domestica)calli.MdIPT5b was also found to exhibit multiple responses to phytohormones and stress signals.The ectopic expression of MdIPT5b resulted in an increase in cold resistance in transformed apple calli and tomato(Solanum lycopersicum)plantlets.The redox balance was partially stabilized through the accumulation of proline under cold stress.However,the ascorbate–glutathione cycle cannot be stabilized in the cold.All physiological and biochemical assays are preformed in spectrophotometer.These results showed that regulating the expression of IPT genes for moderate cytokinin improvement could enhance the accumulation of proline to stabilize the osmotic and redox balances to improve resistance to cold stress.展开更多
基金a grant from the National Science Center,Poland(Grant No.2016/23/B/NZ9/03427)co-financed within the framework of the Polish Ministry of Science and Higher Education’s program:“Regional Initiative Excellence”in the years 2019–2022(No.005/RID/2018/19)“financing amount 12000000,00 PLN”。
文摘Background:The use of industrial by-products rich in bioactive compounds as animal feeds can reduce greenhouse gas production.Paulownia leaves silage(PLS)was supplemented to dairy cows'diet and evaluated in vitro(Exp.1;Rusitec)and in vivo(Exp.2,cannulated lactating dairy cows and Exp.3,non-cannulated lactating dairy cows).The study investigated the PLS effect on ruminal fermentation,microbial populations,methane production and concentration,dry matter intake(DMI),and fatty acid(FA)proportions in ruminal fluid and milk.Results:Several variables of the ruminal fluid were changed in response to the inclusion of PLS.In Exp.1,the p H increased linearly and quadratically,whereas ammonia and total volatile fatty acid(VFA)concentrations increased linearly and cubically.A linear,quadratic,and cubical decrease in methane concentration was observed with increasing dose of the PLS.Exp.2 revealed an increase in ruminal p H and ammonia concentrations,but no changes in total VFA concentration.Inclusion of PLS increased ruminal propionate(at 3 h and 6 h after feeding),isovalerate,and valerate concentrations.Addition of PLS also affected several populations of the analyzed microorganisms.The abundances of protozoa and bacteria were increased,whereas the abundance of archaea were decreased by PLS.Methane production decreased by 11%and 14%in PLS-fed cows compared to the control in Exp.2 and 3,respectively.Exp.3 revealed a reduction in the milk protein and lactose yield in the PLS-fed cows,but no effect on DMI and energy corrected milk yield.Also,the PLS diet affected the ruminal biohydrogenation process with an increased proportions of C18:3 cis-9 cis-12 cis-15,conjugated linoleic acid,C18:1 trans-11 FA,polyunsaturated fatty acids(PUFA),and reduced n6/n3 ratio and saturated fatty acids(SFA)proportion in milk.The relative transcript abundances of the 5 of 6 analyzed genes regulating FA metabolism increased.Conclusions:The dietary PLS replacing the alfalfa silage at 60 g/kg diet can reduce the methane emission and improve milk quality with greater proportions of PUFA,including conjugated linoleic acid,and C18:1 trans-11 along with reduction of SFA.
基金This work was supported by the National Key Research and Development Program(Nos.2022YFB3503600 and 2021YFA0718500)Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDA15360102)National Natural Science Foundation of China(Nos.12273042 and 12075258).
文摘The GECAM series of satellites utilizes LaBr_(3)(Ce),LaBr_(3)(Ce,Sr),and NaI(Tl)crystals as sensitive materials for gamma-ray detectors(GRDs).To investigate the nonlinearity in the detection of low-energy gamma rays and address the errors in the calibration of the E-C relationship,comprehensive tests and comparative studies of the three aforementioned crystals were conducted using Compton electrons,radioactive sources,and mono-energetic X-rays.The nonlinearity test results of the Compton electrons and X-rays demonstrated substantial differences,with all three crystals presenting a higher nonlinearity for X/-rays than for Compton electrons.Despite the LaBr_(3)(Ce)and LaBr_(3)(Ce,Sr)crystals having higher absolute light yields,they exhibited a noticeable nonlinear decrease in the light yield,especially at energies below 400 keV.The NaI(Tl)crystal demonstrated an"excess"light output in the 6-200 keV range,reaching a maximum"excess"of 9.2%at 30 keV in the X-ray testing and up to 15.5%at 14 keV during Compton electron testing,indicating a significant advantage in the detection of low-energy gamma rays.Furthermore,we explored the underlying causes of the observed nonlinearity in these crystals.This study not only elucidates the detector responses of GECAM,but also initiates a comprehensive investigation of the nonlinearity of domestically produced lanthanum bromide and sodium iodide crystals.
基金supported by the National Key R&D Program of China(2021YFA0718500)support from the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(grant Nos.XDA15360102,XDA15360300,XDA15052700 and E02212A02S)+1 种基金the National Natural Science Foundation of China(grant Nos.12173038 and U2038106)the National HEP Data Center(grant No.E029S2S1)。
文摘Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has been widely used for all-sky gamma-ray monitors.There are two major methods for this count distribution localization:χ^(2)minimization method and the Bayesian method.Here we propose a modified Bayesian method that could take advantage of both the accuracy of the Bayesian method and the simplicity of the χ^(2)method.With comprehensive simulations,we find that our Bayesian method with Poisson likelihood is generally more applicable for various bursts than the χ^(2)method,especially for weak bursts.We further proposed a location-spectrum iteration approach based on the Bayesian inference,which could alleviate the problems caused by the spectral difference between the burst and location templates.Our method is very suitable for scenarios with limited computation resources or timesensitive applications,such as in-flight localization software,and low-latency localization for rapidly follow-up observations.
基金supported by the Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences,the support from the Strategic Priority Research Program on Space Science(grant Nos.XDA15360300,XDA15360000,XDA15360102,XDA15052700 and E02212A02S)of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(NSFC,Grant No.12173038)and BeiDou navigation system。
文摘Realtime trigger and localization of bursts are the key functions of GECAM,an all-sky gamma-ray monitor launched on 2020 December 10.We developed a multifunctional trigger and localization software operating in the CPU of the GECAM Electronic Box.This onboard software has the following features:high trigger efficiency for real celestial bursts with a suppression of false triggers caused by charged particle bursts and background fluctuation,dedicated localization algorithm optimized for both short and long bursts,and low time latency of the trigger information which is downlinked through the Global Short Message Communication service of the global BeiDou navigation system.This paper provides a detailed description of the design and development of the trigger and localization software system for GECAM.It covers the general design,workflow,the main functions,and the algorithms used in the system.The paper also includes on-ground trigger tests using simulated gamma-ray bursts generated by a dedicated X-ray tube,as well as an overview of the performance for real celestial bursts during its in-orbit operation.
基金supported by the National Natural Science Foundation of China(31630051)Natural Science Foundation of Jiangsu Province(BK20190524)the China Postdoctoral Science Foundation(2020M681633)。
文摘As the main byproduct of cotton production,cottonseed yields edible vegetable oil,ruminant feed,and industrial products.We evaluated the individual and interactive effects of elevated air temperature and soil drought on cottonseed yield and nutritional quality using two cotton cultivars,Sumian 15(heat-susceptible)and PHY370 WR(heat-tolerant).The experiment was conducted under three levels of soil relative water content(SRWC):(75±5)%,(60±5)%and(45±5)%and two temperature regimes:ambient temperature(AT,31.0/26.4℃,mean daytime/night temperature)and elevated temperature(ET,33.4/28.9℃).Cottonseed yield,boll number,seed number,and single-seed weight were lower under combined ET and SRWC(45±5)%than either individual stress or combined stresses in comparison with the control treatment(SRWC(75±5)%under AT).Drought tended to increase oil content and reduce protein content,whereas ET showed almost the opposite effects.Under the combination of ET and soil drought,oil content was still higher than under control,although ET weakened the beneficial effects of drought.For protein,ET offset the negative impacts of mild drought on protein content,but protein content was not increased under SRWC(45±5)%.Each stress or combined stress reduced oil and protein yields under all treatments,owing to declines in cottonseed yields.The combined stress reduced unsaturated fatty acid(UFA)/saturated fatty acid(SFA)and essential amino acid(EAA)/non-essential amino acid(NAA).Compared with PHY370 WR,the sensitivity of Sumian 15 to the combined factors was evidenced in the following ways:(1)seed yield,yield components,oil and protein yields were decreased more for Sumian 15 than PHY370 WR compared with the control treatment;(2)the combined stresses caused lower oil content,UFA,and UFA/SFA in Sumian 15 than PHY370 WR;(3)interaction effects of the combined factors on protein content and EAA/NAA were detected only in Sumian 15.
基金Project supported by the National Natural Science Foundation of China(Grant No.51872038)。
文摘Doublet luminescence from hybrid metal trihalide perovskite semiconductors is observed along with materials processing when high-quality single crystals are obtainable.Yet,the underlying physical mechanism remains poorly understood.Here,we report controllable solution-processed crystallization that affords high-quality CH3 NH3 PbBr3 single crystals with atomically flat pristine surfaces.Front-face photoluminescence(PL)shows doublet luminescence components with variable relative intensities depending on the crystal surface conditions.We further find that the low-energy PL component with asymmetric spectral line-shape becomes predominant when the atomically flat crystal surfaces are passivated in the ion-abundant saturated solutions,while poor-quality single crystal with visually rough surface only gives the high-energy PL with symmetric line-shape.The asymmetric spectral line-shape of the low-energy PL matches perfectly with the simulated bandedge emission.Therefore,the low-energy PL component is attributable to the intrinsic bandedge emission from the crystal bulk while the high-energy one to surface-specific emission.Elliott fitting to the absorption data and multi-exponential fitting to the time-resolved photoluminescence traces jointly indicate the coexistence of excitons and electron-hole plasmas in optically excited CH_(3)NH_(3)PbBr_(3)single crystals,thereby catching the physical merit that leads to the occurrence of doublet luminescence.
基金the HXMT mission,a project funded by China National Space Administration(CNSA)and the Chinese Academy of Sciences(CAS)supported by the National Key R&D Program of China(2016YFA0400800)the National Natural Science Foundation of China(Grant Nos.11673023,U1838201,U1838115,U1838111,U1838202,11733009 and U1838108)。
文摘We present the observational results from a detailed timing analysis of the black hole candidate EXO 1846-031 during its outburst in 2019 with the observations of Insight-HXMT,NICER and MAXI.This outburst can be classified roughly into four different states.Type-C quasi-periodic oscillations(QPOs)observed by NICER(about 0.1-6 Hz)and Insight-HXMT(about 0.7-8 Hz)are also reported in this work.Meanwhile,we study various physical quantities related to QPO frequency.The QPO rms-frequency relationship in the energy band 1-10 keV indicates that there is a turning pointing in frequency around2 Hz,which is similar to that of GRS 1915+105.A possible hypothesis for the relationship above may be related to the inclination of the source,which may require a high inclination to explain it.The relationships between QPO frequency and QPO rms,hardness,total fractional rms and count rate have also been found in other transient sources,which can indicate that the origin of type-C QPOs is non-thermal.
基金the National Natural Science Foundation of China(No.81730026)the National Key R&D Program(No.2017YFA0105301,No.2019ZX09301113)the Science and Technology Commission of Shanghai Municipality(No.17411953000)。
文摘AIM:To illustrate the underlying mechanism how prominin-1(also known as Prom1)mutation contribute to progressive photoreceptor degeneration.METHODS:A CRISPR-mediated Prom1 knockout(Prom1-KO)mice model in the C57BL/6 was generated and the photoreceptor degeneration phenotypes by means of structural and functional tests were demonstrated.Immunohistochemistry and immunoblot analysis were performed to reveal the localization and quantity of related outer segment(OS)proteins.RESULTS:The Prom1-KO mice developed the photoreceptor degeneration phenotype including the decreased outer nuclear layer(ONL)thickness and compromised electroretinogram amplitude.Immunohistochemistry analysis revealed impaired trafficking of photoreceptor OS proteins.Immunoblot data demonstrated decreased photoreceptor OS proteins.CONCLUSION:Prom1 deprivation causes progressive photoreceptor degeneration.Prom1 is essential for maintaining normal trafficking and normal quantity of photoreceptor OS proteins.The new light is shed on the pathogenic mechanism underlying photoreceptor degeneration caused by Prom1 mutation.
基金funded by the National Key Research and Development Program of China(2018YFB0104400)supported by the Beijing Natural Science Foundation(2214066)。
文摘To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavior,including 5%state of charge(SOC)with small current overcharge and resting until the temperature equilibrium under adiabatic conditions.The intrinsic thermal response and the self-excitation behaviour are analysed through temperature and voltage changes during the step overcharge period.Experimental results show that the deintercalated state of the cathode is highly correlated to self-heating parasitic reactions.Before reaching the upper limit of Negative/Positive(N/P)ratio,the temperature changes little,the heat generation is significantly induced by the reversible heat(endothermic)and ohmic heat,which could balance each other.Following that the lithium metal is gradually deposited on the surface of the anode and reacts with electrolyte upon overcharge,inducing selfheating side reaction.However,this spontaneous thermal reaction could be“self-extinguished”.When the lithium in cathode is completely deintercalated,the boundary point of overcharge is about 4.7 V(~148%SOC,>40℃),and from this point,the self-heating behaviour could be continuously triggered until thermal runaway(TR)without additional overcharge.The whole static and spontaneous process lasts for 115 h and the side reaction heat is beyond 320,000 J.The continuous self-excitation behavior inside the battery is attributed to the interaction between the highly oxidized cathode and the solvent,which leads to the dissolution of metal ions.The dissolved metal ions destroy the SEI(solid electrolyte interphase)film on the surface of the deposited Li of anode,which induces the thermal reaction between lithium metal and the solvent.The interaction between cathode,the deposited Li of anode,and solvent promotes the temperature of the battery to rise slowly.When the temperature of the battery reaches more than 60℃,the reaction between lithium metal and solvent is accelerated.After the temperature rises rapidly to the melting point of the separator,it triggers the thermal runaway of the battery due to the short circuit of the battery.
文摘Natural rock joint permeability deviates from the classic fluid flow governing equations due to the inher-ent fracture surface roughness(i.e.,contact points,spatial correlation,matching,varying aperture,iso-lated voids,infilling material,tortuosity and channellings)and engineering disturbance such as excavations.To improve the accuracy of fracture permeability evaluation,many efforts have been made in analytical,experimental,and numerical methods.This study reviews the modified mathematical gov-erning equations of fluid flow and classifies them based on different influencing factors,such as friction factor,aperture,tortuosity,inertia,and various in situ stress effects.Various experimental and simulation techniques for the coupled normal-and shear-stress flow problems were assessed,and their advantages and disadvantages were also analysed.Furthermore,different surface roughness descriptions and their impacts on mechanical and hydraulic behaviours were discussed,followed by the potential research directions for fracture flow problems.
基金Chongqing Technological Innovation and Application Development Project,Key Technologies and Applications of Cross Media Analysis and Reasoning,No.cstc2019jscx-zdztzxX0037.
文摘BACKGROUND Small intestinal vascular malformations(angiodysplasias)are common causes of small intestinal bleeding.While capsule endoscopy has become the primary diagnostic method for angiodysplasia,manual reading of the entire gastrointestinal tract is time-consuming and requires a heavy workload,which affects the accuracy of diagnosis.AIM To evaluate whether artificial intelligence can assist the diagnosis and increase the detection rate of angiodysplasias in the small intestine,achieve automatic disease detection,and shorten the capsule endoscopy(CE)reading time.METHODS A convolutional neural network semantic segmentation model with a feature fusion method,which automatically recognizes the category of vascular dysplasia under CE and draws the lesion contour,thus improving the efficiency and accuracy of identifying small intestinal vascular malformation lesions,was proposed.Resnet-50 was used as the skeleton network to design the fusion mechanism,fuse the shallow and depth features,and classify the images at the pixel level to achieve the segmentation and recognition of vascular dysplasia.The training set and test set were constructed and compared with PSPNet,Deeplab3+,and UperNet.RESULTS The test set constructed in the study achieved satisfactory results,where pixel accuracy was 99%,mean intersection over union was 0.69,negative predictive value was 98.74%,and positive predictive value was 94.27%.The model parameter was 46.38 M,the float calculation was 467.2 G,and the time length to segment and recognize a picture was 0.6 s.CONCLUSION Constructing a segmentation network based on deep learning to segment and recognize angiodysplasias lesions is an effective and feasible method for diagnosing angiodysplasias lesions.
基金supported by the National Natural Science Foundation of China(32100526,32270712)the Guangxi Natural Science Foundation(AD23026047)+4 种基金the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources(SKLCUSA-a202205,SKLCUSA-a03)Ba-Gui Scholar Program of Guangxi(To Z.G.H),the Project of Bama County for Talents in Science and Technology(20220008)Chief Expert of Tuberous Crops Innovation Team in Guangxi Province(nycytxgxcxtd-2023-11-01)the starting research grant for High-level Talents and Innovation and development multiplication plan from Guangxi University(2022BZRC015).
文摘Cassava is a crucial crop that makes a significant contribution to ensuring human food security.However,high-quality telomere-totelomere cassava genomes have not been available up to now,which has restricted the progress of haploid molecular breeding for cassava.In this study,we constructed two nearly complete haploid resolved genomes and an integrated,telomere-to-telomere gap-free reference genome of an excellent cassava variety,‘Xinxuan 048’,thereby providing a new high-quality genomic resource.Furthermore,the evolutionary history of several species within the Euphorbiaceae family was revealed.Through comparative analysis of haploid genomes,it was found that two haploid genomes had extensive differences in linear structure,transcriptome features,and epigenetic characteristics.Genes located within the highly divergent regions and differentially expressed alleles are enriched in the functions of auxin response and the starch synthesis pathway.The high heterozygosity of cassava‘Xinxuan 048’leads to rapid trait segregation in the first selfed generation.This study provides a theoretical basis and genomic resource for molecular breeding of cassava haploids.
基金The National Natural Science Foundation of China under contract Nos 42076142 and 41776097the Provincial Natural Science Foundation of Fujian under contract No.2020J06030the Fund of Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration under contract No.EPR2020003.
文摘Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxide(CO_(2)),methane(CH_(4))and nitrous oxide(N_(2)O).Understanding how SLR influences GHG emissions is critical for evaluating mangrove blue carbon capability.In this study,potential effects of SLR on the GHG emissions were quantified through static closed chamber technique among three sites under different intertidal elevations,representing tidal flooding situation of SLR values of 0 cm,40 cm and 80 cm,respectively.Compared with Site SLR 0 cm,annual CO_(2) and N_(2)O fluxes decreased by approximately 75.0%and 27.3%due to higher soil water content,lower salinity and soil nutrient environments at Site SLR 80 cm.However,CH_(4) fluxes increased by approximately 13.7%at Site SLR 40 cm and 8.8%at Site SLR 80 cm because of lower salinity,higher soil water content and soil pH.CO_(2)-equivalent fluxes were 396.61 g/(m^(2)·a),1423.29 g/(m^(2)·a)and 1420.21 g/(m^(2)·a)at Sites SLR 80 cm,SLR 40 cm and SLR 0 cm,respectively.From Site SLR 0 cm to Site SLR 80 cm,contribution rate of N_(2)O and CH_(4) increased by approximately 7.42%and 3.02%,while contribution rate of CO_(2) decreased by approximately 10.44%.The results indicated that warming potential of trace CH_(4) and N_(2)O was non-negligible with SLR.Potential effects of SLR on the mangrove blue carbon capability should warrant attention due to changes of all three greenhouse gas fluxes with SLR.
基金supported by the National Natural Science Foundation of China (Grant Nos. 32172522 and 31901974)the China Postdoctoral Science Foundation (Grant No. 2018M640205)+2 种基金the Earmarked Fund for China Agriculture Research System (Grant No. CARS-27)the 2115 Talent Development Program of China Agricultural Universitythe Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology) in the Ministry of Agriculture and Rural Affairs, China
文摘Cytokinins are members of a group of phytohormones involved in various growth and developmental processes in plants.Isopentenyl transferase(IPT)is the rate-limiting enzyme in catalyzing the biosynthesis of cytokinins.In this study,to understand the role of IPT family in cold resistance,78 IPT candidates were identified and characterized in nine Rosaceae genomes.The expansion of IPT families in the Rosaceae primarily occurred through segmental duplication rather than tandem duplication.In general,purifying selection controlled the evolution of IPT families in the Rosaceae,with IPT3 and IPT5 homologs as the primary drivers of evolution.Cis-elements,which are involved in the responses to many environmental stresses or phytohormone signals,were identified in the promoters of MdIPT members.This was consistent with the trends of expression of the MdIPT genes in apple(Malus domestica)calli.MdIPT5b was also found to exhibit multiple responses to phytohormones and stress signals.The ectopic expression of MdIPT5b resulted in an increase in cold resistance in transformed apple calli and tomato(Solanum lycopersicum)plantlets.The redox balance was partially stabilized through the accumulation of proline under cold stress.However,the ascorbate–glutathione cycle cannot be stabilized in the cold.All physiological and biochemical assays are preformed in spectrophotometer.These results showed that regulating the expression of IPT genes for moderate cytokinin improvement could enhance the accumulation of proline to stabilize the osmotic and redox balances to improve resistance to cold stress.