期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Electron-deficient ZnO induced by heterointerface engineering as the dominant active component to boost CO_(2)-to-formate conversion
1
作者 Qing Qin Zijian Li +8 位作者 Yingzheng Zhang Haeseong Jang Li Zhai Liqiang Hou Xiaoqian Wei Zhe Wang min gyu kim Shangguo Liu Xien Liu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期127-136,共10页
Electrocatalytic CO_(2)-to-formate conversion is considered an economically viable process.In general,Zn-based nanomaterials are well-known to be highly efficient electrocatalysts for the conversion of CO_(2) to CO,bu... Electrocatalytic CO_(2)-to-formate conversion is considered an economically viable process.In general,Zn-based nanomaterials are well-known to be highly efficient electrocatalysts for the conversion of CO_(2) to CO,but seldom do they exhibit excellent selectivity toward formate.In this article,we demonstrate that a heterointerface catalyst ZnO/ZnSnO3 with nanosheet morphology shows enhanced selectivity with a maximum Faradaic efficiency(FE)of 86%at−0.9 V versus reversible hydrogen electrode and larger current density for the conversion of CO_(2) to formate than pristine ZnO and ZnSnO3.In particular,the FEs of the C1 products(CO+HCOO−)exceed 98%over the potential window.The experimental measurements combined with theoretical calculations revealed that the ZnO in ZnO/ZnSnO3 heterojunction delivers the valence electron depletion and accordingly optimizes Zn d-band center,which results in moderate Zn-O hybridization of HCOO*and weakened Zn-C hybridization of competing COOH*,thus greatly boosting the HCOOH generation.Our study highlights the importance of charge redistribution in catalysts on the selectivity of electrochemical CO_(2) reduction. 展开更多
关键词 charge redistribution CO_(2)reduction reaction ELECTROCATALYST heterointerfaces SELECTIVITY
下载PDF
Tuning electronic structure of RuO_(2)by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium 被引量:1
2
作者 Qing Qin Tiantian Wang +7 位作者 Zijian Li Guolin Zhang Haeseong Jang Liqiang Hou Yu Wang min gyu kim Shangguo Liu Xien Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期94-102,I0003,共10页
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ... The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER. 展开更多
关键词 ELECTROCATALYST Acidic oxygen evolution reaction Electronic structure engineering DURABILITY Reaction barrier
下载PDF
Modified TiO_(2)/In_(2)O_(3) heterojunction with efficient charge separation for visible-light-driven photocatalytic CO_(2) reduction to C_(2) product
3
作者 Mengfang Liang Xiaodong Shao +8 位作者 Ji Yoon Choi Young Dok kim Trang Thu Tran Jeongyong kim Yosep Hwang min gyu kim Yunhee Cho Sophia Akhtar Hyoyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期714-720,共7页
Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic ... Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic CO_(2) conversion.Herein,a modified TiO_(2)/In_(2)O_(3)(R-P2 5/In_(2)O_(3-x)) type Ⅱ heterojunction composite with oxygen vacancies is designed for photocatalytic CO_(2) reduction,which exhibits excellent CO_(2) reduction activity,with a C_(2) selectivity of 56.66%(in terms of R_(electron)).In situ Fourier-transform infrared spectroscopy(DRIFTS) and time-resolved photoluminescence(TR-PL) spectroscopy are used to reveal the intermediate formation of the photocatalytic mechanism and photogenerated electron lifetime,respectively.The experimental characterizations reveal that the R-P25/In_(2)O_(3-x) composite shows a remarkable behavior for coupling C-C bonds.Besides,efficient charge separation contributes to the improved CO_(2) conversion performance of photocatalysts.This work introduces a type Ⅱ heterojunction composite photocatalyst,which promotes understanding the CO_(2) reduction mechanisms on heterojunction composites and is valuable for the development of photocatalysts. 展开更多
关键词 HETEROJUNCTION Oxygen vacancy Photocatalytic CO_(2)reduction C_(2)product Charge separation
下载PDF
Exploring catalytic behaviors of CoS_(2)-ReS_(2) heterojunction by interfacial engineering
4
作者 Jianmin Yu Yongteng Qian +12 位作者 Sohyeon Seo Yang Liu Huong T.D.Bui Ngoc Quang Tran Jinsun Lee Ashwani Kumar Hongdan Wang Yongguang Luo Xiaodong Shao Yunhee Cho Xinghui Liu min gyu kim Hyoyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期11-18,I0002,共9页
Herein, a stable and efficient CoS_(2)-ReS_(2) electrocatalyst is successfully constructed by using the different molar ratios of CoS_(2) on ReS_(2). The size and morphology of the catalysts are significantly changed ... Herein, a stable and efficient CoS_(2)-ReS_(2) electrocatalyst is successfully constructed by using the different molar ratios of CoS_(2) on ReS_(2). The size and morphology of the catalysts are significantly changed after the CoS_(2) is grown on ReS_(2), providing regulation of the catalytic activity of ReS_(2). Particularly, the optimized CoS_(2)-ReS_(2) shows superior electrocatalytic properties with a low voltage of 1.48 V at 20 mA cm^(-2) for overall water splitting in 1.0 M KOH, which is smaller than the noble metal-based catalysts(1.77 V at 20 mA cm^(-2)). The XPS, XAS, and theoretical data confirm that the interfacial regulation of ReS_(2) by CoS_(2) can provide rich edge catalytic sites, which greatly optimizes the catalytic kinetics and drop the energy barrier for oxygen/hydrogen evolution reactions. Our results demonstrated that interfacial engineering is an efficient route for fabricating high-performance water splitting electrocatalysts. 展开更多
关键词 CoS_(2) ReS_(2) Interfacial engineering Catalytic kinetics Water splitting
下载PDF
Oxygen-deficient SnO_(2)nanoparticles with ultrathin carbon shell for efficient electrocatalytic N_(2)reduction
5
作者 Guangkai Li Haeseong Jang +5 位作者 Zijian Li Jia Wang Xuqiang Ji min gyu kim Xien Liu Jaephil Cho 《Green Energy & Environment》 SCIE EI CSCD 2022年第4期672-679,共8页
For high-efficiency NH_(3)synthesis via ambient-condition electrohydrogenation of inert N_(2),it is pivotal to ingeniously design an active electrocatalyst with multiple features of abundant surfacial deficiency,good ... For high-efficiency NH_(3)synthesis via ambient-condition electrohydrogenation of inert N_(2),it is pivotal to ingeniously design an active electrocatalyst with multiple features of abundant surfacial deficiency,good conductivity and large surface area.Here,oxygen-deficient SnO_(2)nanoparticles encapsulated by ultrathin carbon layer(d-SnO_(2)@C)are developed by hydrothermal deposition coupled with annealing process,as promising catalysts for ambient electrocatalytic N_(2)reduction.d-SnO_(2)@C exhibits high activity and excellent selectivity for electrocatalytic conversion of N_(2)to NH_(3)in acidic electrolytes,with Faradic efficiency as high as 12.7%at-0.15 V versus the reversible hydrogen electrode(RHE)and large NH_(3)yield rate of 16.68μg h^(-1)mgcat^(-1)at-0.25 V vs.RHE in 0.1 mol L^(-1)HCl.Benefiting from the structural superiority of enhanced charge transfer efficiency and optimized surface states,d-SnO_(2)@C also achieves excellent long-term stability. 展开更多
关键词 N_(2)reduction reaction NH_(3)synthesis SnO_(2) ELECTROCATALYSTS Ambient conditions
下载PDF
晶格应变和异质界面工程协同促进铋基催化剂高效电催化CO_(2)还原生成甲酸
6
作者 魏晓倩 李子健 +3 位作者 Haeseong Jang min gyu kim 秦清 刘希恩 《Science China Materials》 SCIE EI CAS CSCD 2023年第4期1398-1406,共9页
表面应力耦合异质结构是一种改善非均相催化剂催化性能的有效策略.它可以在调控催化剂电子结构的同时,促进电荷传输.一般来说,Bi基催化剂对CO_(2)电还原为甲酸的选择性高于ZnO,但是金属Bi的价格高于Zn.本文以十六烷基三甲基溴化铵为模板... 表面应力耦合异质结构是一种改善非均相催化剂催化性能的有效策略.它可以在调控催化剂电子结构的同时,促进电荷传输.一般来说,Bi基催化剂对CO_(2)电还原为甲酸的选择性高于ZnO,但是金属Bi的价格高于Zn.本文以十六烷基三甲基溴化铵为模板剂,通过一步水热法合成了一种具有多孔纳米片形貌的Bi_(2)O_(2)CO_(3)/ZnO异质结催化剂,用于高效电催化CO_(2)还原制备甲酸.在-1.0 V vs.RHE下,该催化剂展现出最大甲酸盐法拉第效率(92%),且在施加-1.2 V vs.RHE电压下甲酸盐偏电流密度为200 m A mg_(Bi)^(-1).更重要的是,对Bi的质量进行归一化发现,Bi_(2)O_(2)CO_(3)/ZnO的质量活度比纯Bi_(2)O_(2)CO_(3)的质量活度提升了3.1倍.通过X-射线光电子能谱和X-射线吸收谱测试表明,在该催化剂中,界面Zn原子电荷向Bi原子转移,形成了富电子的Bi_(2)O_(2)CO_(3)表面,有利于CO_(2)的捕获和活化;而异质结构引起的压缩应力有利于优化反应中间体的吸附能,二者协同提高了Bi_(2)O_(2)CO_(3)/ZnO电催化CO_(2)还原生成甲酸的选择性和活性. 展开更多
关键词 十六烷基三甲基溴化铵 电催化 非均相催化剂 异质界面 电还原 吸收谱 吸附能 异质结构
原文传递
Three-dimensional hierarchical Co(OH)F nanosheet arrays decorated by single-atom Ru for boosting oxygen evolution reaction 被引量:4
7
作者 Shizheng Zhou Haeseong Jang +5 位作者 Qing Qin Zijian Li min gyu kim Chuang Li Xien Liu Jaephil Cho 《Science China Materials》 SCIE EI CAS CSCD 2021年第6期1408-1417,共10页
Electronic coupling with the support plays a crucial role in boosting the intrinsic catalytic activity of a single-atom catalyst.Herein,the three-dimensional(3D)hierarchical Co(OH)F nanosheet arrays modified by single... Electronic coupling with the support plays a crucial role in boosting the intrinsic catalytic activity of a single-atom catalyst.Herein,the three-dimensional(3D)hierarchical Co(OH)F nanosheet arrays modified by singleatom Ru(SA-Ru/Co(OH)F)are prepared by a facile one-step hydrothermal method under mild conditions,which exhibit excellent activity with an overpotential of 200 and 326 mV at 10 and 500 mA cm^(−2),respectively,as well as robust stability for oxygen evolution reaction(OER)in 1.0 mol L^(−1)KOH electrolyte.The study of electronic structures and surface chemical states before and after OER testing reveals that the strong electronic coupling between single-atom Ru and Co(OH)F induces the charge redistribution in SA-Ru/Co(OH)F and suppresses the excessive oxidation of Ru into higher valence state(more than+4)under high OER potential.This work provides a strategy to stabilize single-atom Ru by Co(OH)F that can enhance the activity and durability for OER under large current densities. 展开更多
关键词 ELECTROCATALYST oxygen evolution reaction single atom RUTHENIUM electronic coupling
原文传递
Storage Characteristics of LiNi_(0.8)Co_(0.1+X)Mn_(0.1-X)O_2 (X=0,0.03,0.06) Cathode Materials for Lithium Batteries
8
作者 Junho Eom min gyu kim Jaephil Cho 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期823-,共1页
1 Results LiNi0.8Co0.1+xMn0.1-xO2 cathodes with x=0,0.03 and 0.06 were prepared by firing a mixture of stoichiometric amounts of LiOH·H2O and coprecipitated Ni0.8Co0.1+xMn0.1-x(OH)2 at 800 ℃ for 15 h.Using these... 1 Results LiNi0.8Co0.1+xMn0.1-xO2 cathodes with x=0,0.03 and 0.06 were prepared by firing a mixture of stoichiometric amounts of LiOH·H2O and coprecipitated Ni0.8Co0.1+xMn0.1-x(OH)2 at 800 ℃ for 15 h.Using these powders,their storage characteristics upon exposure to air and electrolytes at 90 ℃ were compared before charging and after charging to 4.3 V with a variation of the storage time.As the Co content (x) increased in the cathode,both the Ni2+ content in the lithium 3a sites,and the contents of the ... 展开更多
关键词 LiNi0.8Co0.1Mn0.1O2 storage characteristics cathode material lithium-ion battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部