Massive MIMO is one of the key technologies in future 5G communications which can satisfy the requirement of high speed and large capacity. This paper considers antenna selection and power allocation design to promote...Massive MIMO is one of the key technologies in future 5G communications which can satisfy the requirement of high speed and large capacity. This paper considers antenna selection and power allocation design to promote energy conservation then provide good quality of service(QoS) for the whole massive MIMO uplink network. Unlike previous related works, hardware impairment, transmission efficiency, and energy consumption at the circuit and antennas are involved in massive MIMO networks. In order to ensure the QoS, we consider the minimum rate constraint for each user and the system, which increases the complexity of power allocation problem for maximizing energy and spectral efficiency in massive MIMO system. To this end, a quantum-inspired social emotional optimization(QSEO) algorithm is proposed to obtain the optimal power control strategy in massive MIMO uplink networks. Simulation results assess the great advantages of QSEO which previous strategies do not have.展开更多
The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction findin...The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.展开更多
In order to improve the reliability of hydrogen sensor,a novel strategy for full range of hydrogen sensor fault detection and recovery is proposed in this paper. Three kinds of sensors are integrated to realize the me...In order to improve the reliability of hydrogen sensor,a novel strategy for full range of hydrogen sensor fault detection and recovery is proposed in this paper. Three kinds of sensors are integrated to realize the measurement for full range of hydrogen concentration based on relevance vector machine( RVM). Failure detection of hydrogen sensor is carried out by using the variance detection method. When a sensor fault is detected,the other fault-free sensors can recover the fault data in real-time by using RVM predictor accounting for the relevance of sensor data. Analysis,together with both simulated and experimental results,a full-range hydrogen detection and hydrogen sensor self-validating experiment is presented to demonstrate that the proposed strategy is superior at accuracy and runtime compared with the conventional methods. Results show that the proposed methodology provides a better solution to the full range of hydrogen detection and the reliability improvement of hydrogen sensor.展开更多
The bootstrap technique is a powerful method for assessing the accuracy of parameters estimator, that have been widely applied on statistical and signal processing problems. A novel program based on bootstrap for DOA ...The bootstrap technique is a powerful method for assessing the accuracy of parameters estimator, that have been widely applied on statistical and signal processing problems. A novel program based on bootstrap for DOA estimation is performed to compared with different number of snapshots in this paper. We have resampled the received signals for 200-1000 times to create new data, therefore the arrival angle is estimated by the music algorithm in the conditions of confidence interval. The demo results show that higher estimation probability and smaller mean square error can be achieved in the situation of fewer snapshots received by passive radar system than that of traditional algorithm.展开更多
基金supported by the National Natural Science Foundation of China (No. 61571149)the Special China Postdoctoral Science Foundation (2015T80325)+1 种基金the Fun-damental Research Funds for the Central Universities (HEUCFP201808)the China Postdoctoral Science Foundation (2013M530148)
文摘Massive MIMO is one of the key technologies in future 5G communications which can satisfy the requirement of high speed and large capacity. This paper considers antenna selection and power allocation design to promote energy conservation then provide good quality of service(QoS) for the whole massive MIMO uplink network. Unlike previous related works, hardware impairment, transmission efficiency, and energy consumption at the circuit and antennas are involved in massive MIMO networks. In order to ensure the QoS, we consider the minimum rate constraint for each user and the system, which increases the complexity of power allocation problem for maximizing energy and spectral efficiency in massive MIMO system. To this end, a quantum-inspired social emotional optimization(QSEO) algorithm is proposed to obtain the optimal power control strategy in massive MIMO uplink networks. Simulation results assess the great advantages of QSEO which previous strategies do not have.
基金supported by the National Natural Science Foundation of China (61102106)the Fundamental Research Funds for the Central Universities (HEUCF1208 HEUCF100801)
文摘The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201306 and No.61473095)
文摘In order to improve the reliability of hydrogen sensor,a novel strategy for full range of hydrogen sensor fault detection and recovery is proposed in this paper. Three kinds of sensors are integrated to realize the measurement for full range of hydrogen concentration based on relevance vector machine( RVM). Failure detection of hydrogen sensor is carried out by using the variance detection method. When a sensor fault is detected,the other fault-free sensors can recover the fault data in real-time by using RVM predictor accounting for the relevance of sensor data. Analysis,together with both simulated and experimental results,a full-range hydrogen detection and hydrogen sensor self-validating experiment is presented to demonstrate that the proposed strategy is superior at accuracy and runtime compared with the conventional methods. Results show that the proposed methodology provides a better solution to the full range of hydrogen detection and the reliability improvement of hydrogen sensor.
基金This research has been supported by Natural Science Foundation of Daqing Normal University (12ZR24).
文摘The bootstrap technique is a powerful method for assessing the accuracy of parameters estimator, that have been widely applied on statistical and signal processing problems. A novel program based on bootstrap for DOA estimation is performed to compared with different number of snapshots in this paper. We have resampled the received signals for 200-1000 times to create new data, therefore the arrival angle is estimated by the music algorithm in the conditions of confidence interval. The demo results show that higher estimation probability and smaller mean square error can be achieved in the situation of fewer snapshots received by passive radar system than that of traditional algorithm.