Objectives:The present study examined the relationship between college students’moral elevation and prosocial behavior.As well as the mediating role of perceived social support and the moderating role of moral identi...Objectives:The present study examined the relationship between college students’moral elevation and prosocial behavior.As well as the mediating role of perceived social support and the moderating role of moral identity.Methods:A sample of 489 college students were recruited for the study.They were asked to complete a series of questionnaires,including Moral Elevation Scale(MES),Perceived Social Support Scale(PSSS),Moral Identity Scale(MIS)and Prosocial Tendency Measure(PTM).As part of the data analysis,we used correlation analysis and the method of constructing latent variable structural equation model to explore the mechanism of action among variables.Results:After controlling for gender,discipline,the research found that:(1)Moral elevation positively predicted the prosocial behavior among the college students;(2)Perceived social support mediated the relationship between moral elevation and prosocial behavior;(3)Moral identity moderated the second half of the model(i.e.,the link between perceived social support and prosocial behavior).Specifically,the mediating effect of perceived social support was stronger for college students with high-level moral identity compared to those with low-level moral identity.Conclusions:Moral identity significantly moderates the mediating effect of perceived social support,and the mediating model with moderated is established.展开更多
Activation of(bi)sulfite(S(IV))by metal oxides is strongly limited by low electrons utilization.In this study,two carbon-supported cobalt ferrites spinels(CoFe^(2)O_(4) QDs-GO and CoFe^(2)O_(4) MOFs-CNTs)have been suc...Activation of(bi)sulfite(S(IV))by metal oxides is strongly limited by low electrons utilization.In this study,two carbon-supported cobalt ferrites spinels(CoFe^(2)O_(4) QDs-GO and CoFe^(2)O_(4) MOFs-CNTs)have been successfully synthesized by one-step solvothermal method.It was found that both catalysts could efficiently activate S(IV),with rapid reductive dechlorination and then oxidative degradation of a recalcitrant antibiotic chloramphenicol(CAP).Characterizations revealed that CoFe^(2)O_(4) spinels were tightly coated on the carbon bases(GO and CNTs),with effectiveness of the internal transfer of electrons.O_(2)˙−was identified for the reductive dechlorination of CAP,with simultaneously detection of both•OH and SO_(4)^(˙−)responsible for further oxidative degradation.The sulfur oxygen radical conversion reactions and molecular oxygen activation would occur together upon the carbon-based spinels.Spatial-separated interfacial reductive-oxidation of CAP would occur with dechlorination of CAP by O_(2)^(˙−)on the carbon bases,and oxidative degradation of intermediates by SO_(4)^(˙−/•)OH upon the CoFe^(2)O_(4) catalysts.展开更多
In this study,greatly enhanced Mn(Ⅱ) adsorption was achieved by as-synthesized diethylenetriaminepentaacetate acid intercalated Mg/Al layered double hydroxides (LDHs-DTPA).The adsorption capacity of LDHs-DTPA was 83....In this study,greatly enhanced Mn(Ⅱ) adsorption was achieved by as-synthesized diethylenetriaminepentaacetate acid intercalated Mg/Al layered double hydroxides (LDHs-DTPA).The adsorption capacity of LDHs-DTPA was 83.5 mg/g,which is much higher than that of LDHs-EDTA (44.4 mg/g),LDHs-Oxalate (21.6 mg/g) and LDHs (28.8 mg/g).The adsorption data of aqueous Mn(Ⅱ) using LDHs-DTPA could be well described by the pseudosecond order kinetics and Langrnuir isotherm model.Thermodynamics study results also showed that the adsorption process of Mn(Ⅱ) by LDHs-DTPA was exothermic as indicated by the negative △H value.Furthermore,based on the structural,morphological and thermostable features,as well as FT-IR and XPS characterizations of LDHs-DTPA and the pristine LDHs,the adsorption mechanism of Mn(Ⅱ) was proposed.The carboxyl groups of DTPA were proposed to be the main binding sites for Mn(Ⅱ),and the hydroxyl groups of LDHs also played a minor role in the adsorption process.Among the three common regeneration reagents,0.1 mol/L Na2CO3 was the best for reusing LDHs-DTPA in Mn(Ⅱ) adsorption.Besides,the Mn(Ⅱ) adsorption performance could be hindered in the presence of typical inorganic ions,especially cations.Further specific modifications of LDHs-DTPA are suggested to get more selective adsorption of Mn(ll) in practical applications.展开更多
In this study,efficient sulfamethoxazole(SMX) degradation was demonstrated in a novel neutral FeredFenton like/oxalate(electro-Fe^2+/PDS/Ox,Fered-FL/Ox) system adopting pre-anodized Ti@Ti02 cathode.Optimization of ope...In this study,efficient sulfamethoxazole(SMX) degradation was demonstrated in a novel neutral FeredFenton like/oxalate(electro-Fe^2+/PDS/Ox,Fered-FL/Ox) system adopting pre-anodized Ti@Ti02 cathode.Optimization of operational parameters was conducted and the whole reaction mechanism based on the critical solid-liquid interfacial reactions was explored.An efficient neutral heterogeneous-homogenous iron cyclewould exist in the Fered-FL/Ox system,depending on the formation of specific C-O-Ti bonds through the inner sphere surface complex(ISSC) of Fe(C2 O4)3^3-.It would induce ultrafast electron transfer from the cathode to the FeⅢ core,effectively accelerating the neutral Fenton-like reactions and complete mineralization of SMX with relative low dosage of ferrous catalyst and applied voltage.The result of this study is expected to supply a good alternative in treating complex neutral industrial wastewaters.展开更多
This study has demonstrated an interesting amplification effect of magnetic field (MF) on the hydroxylamine (HA)-promoted zero valent iron (ZVI)/H_(2)O_(2) Fenton-like system. Sulfamethoxazole (SMX) could be efficient...This study has demonstrated an interesting amplification effect of magnetic field (MF) on the hydroxylamine (HA)-promoted zero valent iron (ZVI)/H_(2)O_(2) Fenton-like system. Sulfamethoxazole (SMX) could be efficiently degraded at near neutral pH. Conditional parameters affecting the SMX degradation in the ZVI/H_(2)O_(2)/HA/MF system, e.g., pH and the dosages of ZVI, HA and H_(2)O_(2), were investigated. Unlike the acid-favorable ZVI/H_(2)O_(2) and ZVI/H_(2)O_(2)/HA systems, the MF-assisted system exhibited good performances even at pH up to 6.0 and highest degradation rate at pH of 5.0. ^(·)OH was still identified as the responsible oxidant. A mechanism involving the MF-enhanced heterogeneous-homogeneous iron cycle was proposed in the near-neutral ZVI/H_(2)O_(2)/HA system. Without MF, HA-induced reductive dissolution of the surface iron oxides occurred and thus leaded to homogeneous Fenton reactions. After the introduction of MF, the gradient magnetic field formed on the ZVI particles would induce the generation of concentration cells of Fe(II) and local corrosion of iron. Large amounts of aqueous and bounded Fe(II) catalyzed H_(2)O_(2) to efficiently produce ^(·)OH, while HA maintained the surface and bulk cycles of Fe(II)/Fe(III). The result of study is expected to provide a green, energy-free method in improving the effectiveness of ZVI-based Fenton-like technologies at weak-acidic circumstances.展开更多
This study demonstrated interesting ultrafast activation of molecular O_(2) by copper oxide(CuO)particles and very rapid elimination of aqueous 2,4-dichlo rophenol(2,4-DCP)within reaction time of 30 s.Electron paramag...This study demonstrated interesting ultrafast activation of molecular O_(2) by copper oxide(CuO)particles and very rapid elimination of aqueous 2,4-dichlo rophenol(2,4-DCP)within reaction time of 30 s.Electron paramagnetic resonance(EPR)characterization indicated that·OH,Cu^(3+),^1 O_(2) and O_(2)^·-were generated in the CuO/O_(2) systems,wherein O_(2)^·-would be the main reactive species responsible for 2,4-DCP degradation.It was further found that the catalytic ability of CuO for O_(2) activation was highly size dependent and nano-CuO was far reactive than micro-CuO.H2 temperature-programmed reduction(H2-TPR),X-ray photoelectron spectroscopy(XPS)and vibrating sample magnetometer(VSM)analyses revealed that both the quantity and the reactivity of the surface reaction sites(surface Cu+and O_(2))could determine the catalytic ability of CuO affecting efficient Cu^(+)-based molecular oxygen activation.Moreover,the O_(2) activation ability of CuO would depend on not only the dimension,but also crystalline factors,for example,the exposed facets.展开更多
In this study,a carbon quantum dots modified maghemite catalyst(CQDs@γ-Fe_(2)O_(3))has been synthesized by a one-step solvothermal method for efficient persulfate(PDS)activation under visible light irradiation.Transm...In this study,a carbon quantum dots modified maghemite catalyst(CQDs@γ-Fe_(2)O_(3))has been synthesized by a one-step solvothermal method for efficient persulfate(PDS)activation under visible light irradiation.Transmission electron microscopy(TEM),scanning electron microscopy(SEM)and UV-vis diffuse reflectance spectroscopy(UV-vis DRS)characterization indicated that the formation of heterojunction structure between CQDs and y-Fe_(2)O_(3) effectively reduced the catalyst band gap(Eg),favoring the separation rate of electrons and holes,leading to remarkable efficient sulfamethoxazole(SMX)degradation as compared to the dark-CQDs@γ-Fe_(2)O_(3)/PDS and vis-γ-Fe_(2)O_(3)/PDS systems.The evolution of dissolved irons also demonstrated that CQDs could accelerate the in-situ reduction of surface-bounded Fe^(3+).Electron paramagnetic resonance(EPR)and radical scavenging experiments demonstrated that both*OH and SO_(4)·were generated in the reaction system,while*OH was relatively more dominant than SO_(4)·for SMX degradation.Finally,the reaction mechanism in the vis-CQDs@y-Fe_(2)O_(3)/PDS system was proposed involving an effective and accelerated heterogeneous-homogeneous iron cycle.CQDs would enrich the photo-generated electrons from y-Fe_(2)O_(3),causing efficient interfacial generation of surfacebond Fe^(2+)and reduction of adsorbed Fe3+.This visible light induced iron cycle would eventually lead to effective activation of PDS as well as the efficient degradation of SMX.展开更多
This study demonstrated that as-synthesized nano Fe/Cu bimetals could achieve significant enhancement in the degradation of diclofenac(DCF),as compared to much slow removal of DCF by Cu(Ⅱ) or zero valent iron nanopar...This study demonstrated that as-synthesized nano Fe/Cu bimetals could achieve significant enhancement in the degradation of diclofenac(DCF),as compared to much slow removal of DCF by Cu(Ⅱ) or zero valent iron nanoparticles(nZVI),respectively.Further observations on the evolution of O_(2) activation process by nano Fe/Cu bimetals was conducted stretching to the preparation phase(started by nZVI/Cu2+).Interesting breakpoints we re observed with obvious sudden increase in the DCF degradation efficiency and decrease in solution pH,as the original nZVI just consumed up to Fe(Ⅱ) and Cu(II) appeared again.It suggested that the four-electrons reaction of O_(2) and Cu-deposited nZVI would occur to generate water prior to the breakpoints,while Cu(0) and Fe(Ⅱ) would play most important role in activation of O_(2) afterwards.Through the electron spin resonance(ESR) analysis and quenching experiments.·OH was identified as the responsible reactive species.Further time-dependent quantifications in the cases of Cu(0)/Fe(Ⅱ) systems we re carried out.It was found that the ’OH accumulation was positively and linearly correlated with nCu dose,Fe(Ⅱ) consumption,and Fe(II) dose,respectively.Since either Cu(O) or Fe(Ⅱ)would be inefficient in activating oxygen to produce ·OH,a stage-evolution mechanism of O_(2) activated by nano Fe/Cu bimetals was proposed involving:(a) Rapid consumption of Fe(0) and release of Fe(Ⅱ) based on the Cu-Fe galvanic corrosion,(b) adsorption and transformation of O_(2) to O_(2)2 at the nCu surface,and(c) Fe(Ⅱ)-catalyzed activation of the adsorbed O_(2)2 to ·OH.展开更多
The authors regret to inform that there were some mistakes in the part of thermodynamics studies,the calculated enthalpy,entropy and Gibbs energy were wrong due to the misunder-standing of the equilibrium constant(Kads).
基金the Chinese National Office for Education Sciences Planning(Grant No.DBA190311).
文摘Objectives:The present study examined the relationship between college students’moral elevation and prosocial behavior.As well as the mediating role of perceived social support and the moderating role of moral identity.Methods:A sample of 489 college students were recruited for the study.They were asked to complete a series of questionnaires,including Moral Elevation Scale(MES),Perceived Social Support Scale(PSSS),Moral Identity Scale(MIS)and Prosocial Tendency Measure(PTM).As part of the data analysis,we used correlation analysis and the method of constructing latent variable structural equation model to explore the mechanism of action among variables.Results:After controlling for gender,discipline,the research found that:(1)Moral elevation positively predicted the prosocial behavior among the college students;(2)Perceived social support mediated the relationship between moral elevation and prosocial behavior;(3)Moral identity moderated the second half of the model(i.e.,the link between perceived social support and prosocial behavior).Specifically,the mediating effect of perceived social support was stronger for college students with high-level moral identity compared to those with low-level moral identity.Conclusions:Moral identity significantly moderates the mediating effect of perceived social support,and the mediating model with moderated is established.
基金financially-supported by the National Natural Science Foundation of China(Nos.21677055,22006045 and 21407052)the National Key Technical Research and Development Program of China(No.2019YFC1805204)+1 种基金Leading Plan for Scientific and Technological Innovation of High-tech Industries of Hunan Province(No.2021GK4060)the Fundamental Research Funds for the Central Universities,HUST(No.2017KFXKJC004).
文摘Activation of(bi)sulfite(S(IV))by metal oxides is strongly limited by low electrons utilization.In this study,two carbon-supported cobalt ferrites spinels(CoFe^(2)O_(4) QDs-GO and CoFe^(2)O_(4) MOFs-CNTs)have been successfully synthesized by one-step solvothermal method.It was found that both catalysts could efficiently activate S(IV),with rapid reductive dechlorination and then oxidative degradation of a recalcitrant antibiotic chloramphenicol(CAP).Characterizations revealed that CoFe^(2)O_(4) spinels were tightly coated on the carbon bases(GO and CNTs),with effectiveness of the internal transfer of electrons.O_(2)˙−was identified for the reductive dechlorination of CAP,with simultaneously detection of both•OH and SO_(4)^(˙−)responsible for further oxidative degradation.The sulfur oxygen radical conversion reactions and molecular oxygen activation would occur together upon the carbon-based spinels.Spatial-separated interfacial reductive-oxidation of CAP would occur with dechlorination of CAP by O_(2)^(˙−)on the carbon bases,and oxidative degradation of intermediates by SO_(4)^(˙−/•)OH upon the CoFe^(2)O_(4) catalysts.
基金supported by the National Natural Science Foundation of China(Nos.21677055 and 21407052)the Key Project in the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period(No.2015BAB01B04)the Fundamental Research Funds for the Central Universities,HUST(Nos.2017KFXKJC004 and 2016YXMS287)
文摘In this study,greatly enhanced Mn(Ⅱ) adsorption was achieved by as-synthesized diethylenetriaminepentaacetate acid intercalated Mg/Al layered double hydroxides (LDHs-DTPA).The adsorption capacity of LDHs-DTPA was 83.5 mg/g,which is much higher than that of LDHs-EDTA (44.4 mg/g),LDHs-Oxalate (21.6 mg/g) and LDHs (28.8 mg/g).The adsorption data of aqueous Mn(Ⅱ) using LDHs-DTPA could be well described by the pseudosecond order kinetics and Langrnuir isotherm model.Thermodynamics study results also showed that the adsorption process of Mn(Ⅱ) by LDHs-DTPA was exothermic as indicated by the negative △H value.Furthermore,based on the structural,morphological and thermostable features,as well as FT-IR and XPS characterizations of LDHs-DTPA and the pristine LDHs,the adsorption mechanism of Mn(Ⅱ) was proposed.The carboxyl groups of DTPA were proposed to be the main binding sites for Mn(Ⅱ),and the hydroxyl groups of LDHs also played a minor role in the adsorption process.Among the three common regeneration reagents,0.1 mol/L Na2CO3 was the best for reusing LDHs-DTPA in Mn(Ⅱ) adsorption.Besides,the Mn(Ⅱ) adsorption performance could be hindered in the presence of typical inorganic ions,especially cations.Further specific modifications of LDHs-DTPA are suggested to get more selective adsorption of Mn(ll) in practical applications.
基金financially supported by the National Natural Science Foundation of China (Nos.21677055 and 21407052)the Fundamental Research Funds for the Central Universities,HUST (Nos.2017KFXKJC004 and 2016YXMS287)
文摘In this study,efficient sulfamethoxazole(SMX) degradation was demonstrated in a novel neutral FeredFenton like/oxalate(electro-Fe^2+/PDS/Ox,Fered-FL/Ox) system adopting pre-anodized Ti@Ti02 cathode.Optimization of operational parameters was conducted and the whole reaction mechanism based on the critical solid-liquid interfacial reactions was explored.An efficient neutral heterogeneous-homogenous iron cyclewould exist in the Fered-FL/Ox system,depending on the formation of specific C-O-Ti bonds through the inner sphere surface complex(ISSC) of Fe(C2 O4)3^3-.It would induce ultrafast electron transfer from the cathode to the FeⅢ core,effectively accelerating the neutral Fenton-like reactions and complete mineralization of SMX with relative low dosage of ferrous catalyst and applied voltage.The result of this study is expected to supply a good alternative in treating complex neutral industrial wastewaters.
基金supported by the National Natural Science Foundation of China (Nos. 21677055 and 22006045)the China Postdoctory Science Foundation (No. 2020M672361)the Project of Three Gorges Corporation (No. JD-ZC-FW-20-001)。
文摘This study has demonstrated an interesting amplification effect of magnetic field (MF) on the hydroxylamine (HA)-promoted zero valent iron (ZVI)/H_(2)O_(2) Fenton-like system. Sulfamethoxazole (SMX) could be efficiently degraded at near neutral pH. Conditional parameters affecting the SMX degradation in the ZVI/H_(2)O_(2)/HA/MF system, e.g., pH and the dosages of ZVI, HA and H_(2)O_(2), were investigated. Unlike the acid-favorable ZVI/H_(2)O_(2) and ZVI/H_(2)O_(2)/HA systems, the MF-assisted system exhibited good performances even at pH up to 6.0 and highest degradation rate at pH of 5.0. ^(·)OH was still identified as the responsible oxidant. A mechanism involving the MF-enhanced heterogeneous-homogeneous iron cycle was proposed in the near-neutral ZVI/H_(2)O_(2)/HA system. Without MF, HA-induced reductive dissolution of the surface iron oxides occurred and thus leaded to homogeneous Fenton reactions. After the introduction of MF, the gradient magnetic field formed on the ZVI particles would induce the generation of concentration cells of Fe(II) and local corrosion of iron. Large amounts of aqueous and bounded Fe(II) catalyzed H_(2)O_(2) to efficiently produce ^(·)OH, while HA maintained the surface and bulk cycles of Fe(II)/Fe(III). The result of study is expected to provide a green, energy-free method in improving the effectiveness of ZVI-based Fenton-like technologies at weak-acidic circumstances.
基金the National Natural Science Foundation of China(Nos.21677055 and 21407052)National Key Research and Development Program of China(2019YFC1805204)+1 种基金Project of Three Gorges Corporation(No.JDZC-FW-20-001)the Fundamental Research Funds for the Central Universities,HUST(Nos.2017KFXKJC004 and2016YXMS287)。
文摘This study demonstrated interesting ultrafast activation of molecular O_(2) by copper oxide(CuO)particles and very rapid elimination of aqueous 2,4-dichlo rophenol(2,4-DCP)within reaction time of 30 s.Electron paramagnetic resonance(EPR)characterization indicated that·OH,Cu^(3+),^1 O_(2) and O_(2)^·-were generated in the CuO/O_(2) systems,wherein O_(2)^·-would be the main reactive species responsible for 2,4-DCP degradation.It was further found that the catalytic ability of CuO for O_(2) activation was highly size dependent and nano-CuO was far reactive than micro-CuO.H2 temperature-programmed reduction(H2-TPR),X-ray photoelectron spectroscopy(XPS)and vibrating sample magnetometer(VSM)analyses revealed that both the quantity and the reactivity of the surface reaction sites(surface Cu+and O_(2))could determine the catalytic ability of CuO affecting efficient Cu^(+)-based molecular oxygen activation.Moreover,the O_(2) activation ability of CuO would depend on not only the dimension,but also crystalline factors,for example,the exposed facets.
基金the National Natural Science Foundation of China(Nos.21677055,21407052)the Fundamental Research Funds for the Central Universities,Huazhong University of Science and Technology(HUST)(Nos.2017KFXKJC004,2016YXMS287)。
文摘In this study,a carbon quantum dots modified maghemite catalyst(CQDs@γ-Fe_(2)O_(3))has been synthesized by a one-step solvothermal method for efficient persulfate(PDS)activation under visible light irradiation.Transmission electron microscopy(TEM),scanning electron microscopy(SEM)and UV-vis diffuse reflectance spectroscopy(UV-vis DRS)characterization indicated that the formation of heterojunction structure between CQDs and y-Fe_(2)O_(3) effectively reduced the catalyst band gap(Eg),favoring the separation rate of electrons and holes,leading to remarkable efficient sulfamethoxazole(SMX)degradation as compared to the dark-CQDs@γ-Fe_(2)O_(3)/PDS and vis-γ-Fe_(2)O_(3)/PDS systems.The evolution of dissolved irons also demonstrated that CQDs could accelerate the in-situ reduction of surface-bounded Fe^(3+).Electron paramagnetic resonance(EPR)and radical scavenging experiments demonstrated that both*OH and SO_(4)·were generated in the reaction system,while*OH was relatively more dominant than SO_(4)·for SMX degradation.Finally,the reaction mechanism in the vis-CQDs@y-Fe_(2)O_(3)/PDS system was proposed involving an effective and accelerated heterogeneous-homogeneous iron cycle.CQDs would enrich the photo-generated electrons from y-Fe_(2)O_(3),causing efficient interfacial generation of surfacebond Fe^(2+)and reduction of adsorbed Fe3+.This visible light induced iron cycle would eventually lead to effective activation of PDS as well as the efficient degradation of SMX.
基金the National Natural Science Foundation of China(Nos.21677055 and 21407052)National Key Research and Development Program of China(No.2019YFC1805204)+1 种基金Project of Three Gorges Corporation(No.JDZC-FW-20-001)the Fundamental Research Funds for the Central Universities,HUST(No.2017KFXKJC004)。
文摘This study demonstrated that as-synthesized nano Fe/Cu bimetals could achieve significant enhancement in the degradation of diclofenac(DCF),as compared to much slow removal of DCF by Cu(Ⅱ) or zero valent iron nanoparticles(nZVI),respectively.Further observations on the evolution of O_(2) activation process by nano Fe/Cu bimetals was conducted stretching to the preparation phase(started by nZVI/Cu2+).Interesting breakpoints we re observed with obvious sudden increase in the DCF degradation efficiency and decrease in solution pH,as the original nZVI just consumed up to Fe(Ⅱ) and Cu(II) appeared again.It suggested that the four-electrons reaction of O_(2) and Cu-deposited nZVI would occur to generate water prior to the breakpoints,while Cu(0) and Fe(Ⅱ) would play most important role in activation of O_(2) afterwards.Through the electron spin resonance(ESR) analysis and quenching experiments.·OH was identified as the responsible reactive species.Further time-dependent quantifications in the cases of Cu(0)/Fe(Ⅱ) systems we re carried out.It was found that the ’OH accumulation was positively and linearly correlated with nCu dose,Fe(Ⅱ) consumption,and Fe(II) dose,respectively.Since either Cu(O) or Fe(Ⅱ)would be inefficient in activating oxygen to produce ·OH,a stage-evolution mechanism of O_(2) activated by nano Fe/Cu bimetals was proposed involving:(a) Rapid consumption of Fe(0) and release of Fe(Ⅱ) based on the Cu-Fe galvanic corrosion,(b) adsorption and transformation of O_(2) to O_(2)2 at the nCu surface,and(c) Fe(Ⅱ)-catalyzed activation of the adsorbed O_(2)2 to ·OH.
文摘The authors regret to inform that there were some mistakes in the part of thermodynamics studies,the calculated enthalpy,entropy and Gibbs energy were wrong due to the misunder-standing of the equilibrium constant(Kads).