The incidence of acute myocardial infarction (AMI) is increasing year by year, which seriously endangers human health around the world. The preferred treatment strategy for AMI patients is the use of drug-eluting sten...The incidence of acute myocardial infarction (AMI) is increasing year by year, which seriously endangers human health around the world. The preferred treatment strategy for AMI patients is the use of drug-eluting stents (DES), as there is ample evidence to suggest that stent implantation can reduce major adverse cardiovascular events (MACEs). With the application of drug-coated balloons (DCBs) and the enhancement of the concept of interventional without implantation, the question is whether DCBs can be safely and effectively used in patients with AMI? The purpose of this study was to investigate the safety and effectiveness of DCBs in the treatment of AMI. A retrospective review of clinical data was conducted on 55 AMI patients who underwent primary percutaneous coronary intervention (PCI) from January 2020 to December 2021. Of these patients, 25 were treated with DCBs and 30 were treated with DESs. Optical coherence tomography (OCT) was used to measure the minimum lumen diameter, lumen stenosis, and coronary artery dissection before and after surgery, and angina pectoris attacks and various MACEs were recorded at 1, 6, and 12 months after surgery. The results showed that there were no significant differences in clinical baseline data between the two groups. However, the minimum lumen diameter of the DCB group immediately after the operation was smaller than that of the DES group, and the stenosis degree of the lumen in the DCB group was higher than that in the DES group. The incidence of coronary artery dissection in the DCB group was significantly higher than that in the DES group, but the majority of them were type B. At 1, 6, and 12 months after treatment, there was no significant difference in the occurrence of MACEs between the two groups. In conclusion, DCBs is a safe and effective treatment for AMI. However, the incidence of coronary artery dissection in DCB patients is higher than that in DES patients, but the majority of them are type B. .展开更多
Hydrogen evolution reaction(HER) plays a key role in generating clean and renewable energy. As the most effective HER electrocatalysts, Pt group catalysts suffer from severe problems such as high price and scarcity. I...Hydrogen evolution reaction(HER) plays a key role in generating clean and renewable energy. As the most effective HER electrocatalysts, Pt group catalysts suffer from severe problems such as high price and scarcity. It is highly desirable to design and synthesize sustainable HER electrocatalysts to replace the Pt group catalysts. Due to their low cost, high abundance and high activities, cobalt-incorporated N-doped nanocarbon hybrids are promising candidate electrocatalysts for HER. In this report, we demonstrated a robust and eco-friendly host-guest approach to fabricate metallic cobalt nanoparticles embedded in N-doped carbon fibers derived from natural silk fibers. Benefiting from the onedimensional nanostructure, the well-dispersed metallic cobalt nanoparticles and the N-doped thin graphitized carbon layer coating, the best Cobased electrocatalyst manifests low overpotential(61 mV@10 mA/cm^2) HER activity that is comparable with commercial 20% Pt/C, and good stability in acid. Our findings provide a novel and unique route to explore high-performance noble-metal-free HER electrocatalysts.展开更多
Diatomic site catalysts(DACs)with two adjacent atomic metal species can provide synergistic interactions and more sophisticated functionalities to break the bottleneck of intrinsic drawbacks of single atom catalysts(S...Diatomic site catalysts(DACs)with two adjacent atomic metal species can provide synergistic interactions and more sophisticated functionalities to break the bottleneck of intrinsic drawbacks of single atom catalysts(SACs).Herein,we have designed a CuZn diatomic site(CuZn-DAS)electrocatalyst with unique coordination structure(CuN_(4)-ZnN_(4))by anchoring and ordering the spatial distance between the metal precursors on the carbon nitride(C_(3)N_(4))derived N-doped carbon(NC)substrate.The CuZn-DAS/NC shows high activity and selectivity for electroreduction CO_(2)into CO.The Faradaic efficiency for CO of CuZn-DAS/NC(98.4%)is higher than that of Cu single atomic site on NC(Cu-SAS/NC)(36.4%)and Zn single atomic site on NC(Zn-SAS/NC)(66.8%)at-0.6 V versus reversible hydrogen electrode(vs.RHE).In situ characterizations reveal that the CuZn-DAS is more favorable for the formation and adsorption of^(*)COOH than those of the electrocatalysts with single atomic site.Theorical calculations show that the charge redistribution of Zn site in CuZn-DAS/NC caused by the considerable electron transfers from Zn atoms to the adjacent Cu atoms can reduce the adsorption energy barriers for^(*)COOH and^(*)CO production,improving the activity and CO selectivity.展开更多
Regulating chemical bonds to balance the adsorption and disassociation of water molecules on catalyst surfaces is crucial for overall water splitting in alkaline solution.Here we report a facile strategy for designing...Regulating chemical bonds to balance the adsorption and disassociation of water molecules on catalyst surfaces is crucial for overall water splitting in alkaline solution.Here we report a facile strategy for designing Ni2W4C-W3C Janus structures with abundant Ni-W metallic bonds on surfaces through interfacial engineering.Inserting Ni atoms into the W3C crystals in reaction progress generates a new Ni2 W4C phase,making the inert W atoms in W3C be active sites in Ni2W4C for overall water splitting.The Ni2W4CW3C/carbon nanofibers(Ni2 W4-W3C/CNFs)require overpotentials of 63 mV to reach 10 mA cm^-2 for hydrogen evolution reaction(HER)and 270 mV to reach 30 mA cm^-2 for oxygen evolution reaction(OER)in alkaline electrolyte,respectively.When utilized as both cathode and anode in alkaline solution for overall water splitting,cell voltages of 1.55 and 1.87 V are needed to reach 10 and 100 mA cm^-2,respectively.Density functional theory(DFT)results indicate that the strong interactions between Ni and W increase the local electronic states of W atoms.The Ni2W4C provides active sites for cleaving H-OH bonds,and the W3C facilitates the combination of Hads intermediates into H2 molecules.The in situ electrochemical-Raman results demonstrate that the strong absorption ability for hydroxyl and water molecules and further demonstrate that W atoms are the real active sites.展开更多
In search of effective and stable bifunctional electrocatalyst for electrocatalytic water splitting is still a major challenge for the highly efficient H_(2) production.Here,we reported a facile strategy to design hig...In search of effective and stable bifunctional electrocatalyst for electrocatalytic water splitting is still a major challenge for the highly efficient H_(2) production.Here,we reported a facile strategy to design high-indexed Cu_(3)Pd_(13)_S_(7) nanoparticles(NPs)in situ synthesized on the three-dimensional(3D)carbon nanofibers(CNFs)by combining electrospinning and chemical vapor deposition(CVD)technology.The high-index facets with abundant active sites,the 3D architecture CNFs with high specific surface area and synergistic effect of Cu-Pd-S bonds with strong electron couplings together promote the elec-trocatalytic performance.The Cu_(3)Pd_(13)_S_(7)/CNFs shows excellent electrocatalytic activity with low overpotentials of 52 mV(10 mA cm^(−2))for hydrogen evolution reaction(HER)and 240 mV(10 mA cm^(−2))for oxygen evolution reaction(OER).The excellent protection of Cu_(3)Pd_(13)_S_(7) by CNFs from aggregation and electrolyte corrosion lead to the high stability of Cu_(3)Pd_(13)_S_(7)/CNFs under acidic and alkaline conditions.展开更多
文摘The incidence of acute myocardial infarction (AMI) is increasing year by year, which seriously endangers human health around the world. The preferred treatment strategy for AMI patients is the use of drug-eluting stents (DES), as there is ample evidence to suggest that stent implantation can reduce major adverse cardiovascular events (MACEs). With the application of drug-coated balloons (DCBs) and the enhancement of the concept of interventional without implantation, the question is whether DCBs can be safely and effectively used in patients with AMI? The purpose of this study was to investigate the safety and effectiveness of DCBs in the treatment of AMI. A retrospective review of clinical data was conducted on 55 AMI patients who underwent primary percutaneous coronary intervention (PCI) from January 2020 to December 2021. Of these patients, 25 were treated with DCBs and 30 were treated with DESs. Optical coherence tomography (OCT) was used to measure the minimum lumen diameter, lumen stenosis, and coronary artery dissection before and after surgery, and angina pectoris attacks and various MACEs were recorded at 1, 6, and 12 months after surgery. The results showed that there were no significant differences in clinical baseline data between the two groups. However, the minimum lumen diameter of the DCB group immediately after the operation was smaller than that of the DES group, and the stenosis degree of the lumen in the DCB group was higher than that in the DES group. The incidence of coronary artery dissection in the DCB group was significantly higher than that in the DES group, but the majority of them were type B. At 1, 6, and 12 months after treatment, there was no significant difference in the occurrence of MACEs between the two groups. In conclusion, DCBs is a safe and effective treatment for AMI. However, the incidence of coronary artery dissection in DCB patients is higher than that in DES patients, but the majority of them are type B. .
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No. 21203137, 51573166)the Natural Science Foundation of Zhejiang Province (Grant No. LQ16E020005)
文摘Hydrogen evolution reaction(HER) plays a key role in generating clean and renewable energy. As the most effective HER electrocatalysts, Pt group catalysts suffer from severe problems such as high price and scarcity. It is highly desirable to design and synthesize sustainable HER electrocatalysts to replace the Pt group catalysts. Due to their low cost, high abundance and high activities, cobalt-incorporated N-doped nanocarbon hybrids are promising candidate electrocatalysts for HER. In this report, we demonstrated a robust and eco-friendly host-guest approach to fabricate metallic cobalt nanoparticles embedded in N-doped carbon fibers derived from natural silk fibers. Benefiting from the onedimensional nanostructure, the well-dispersed metallic cobalt nanoparticles and the N-doped thin graphitized carbon layer coating, the best Cobased electrocatalyst manifests low overpotential(61 mV@10 mA/cm^2) HER activity that is comparable with commercial 20% Pt/C, and good stability in acid. Our findings provide a novel and unique route to explore high-performance noble-metal-free HER electrocatalysts.
基金This study was supported by the National Natural Science Foundation of China(Nos.52073124 and 52273058)the Natural Science Foundation of Jiangsu Province(No.SBK2022030167)+1 种基金the MOE&SAFEA,111 Project(No.B13025)the Fundamental Research Funds for the Central Universities.
文摘Diatomic site catalysts(DACs)with two adjacent atomic metal species can provide synergistic interactions and more sophisticated functionalities to break the bottleneck of intrinsic drawbacks of single atom catalysts(SACs).Herein,we have designed a CuZn diatomic site(CuZn-DAS)electrocatalyst with unique coordination structure(CuN_(4)-ZnN_(4))by anchoring and ordering the spatial distance between the metal precursors on the carbon nitride(C_(3)N_(4))derived N-doped carbon(NC)substrate.The CuZn-DAS/NC shows high activity and selectivity for electroreduction CO_(2)into CO.The Faradaic efficiency for CO of CuZn-DAS/NC(98.4%)is higher than that of Cu single atomic site on NC(Cu-SAS/NC)(36.4%)and Zn single atomic site on NC(Zn-SAS/NC)(66.8%)at-0.6 V versus reversible hydrogen electrode(vs.RHE).In situ characterizations reveal that the CuZn-DAS is more favorable for the formation and adsorption of^(*)COOH than those of the electrocatalysts with single atomic site.Theorical calculations show that the charge redistribution of Zn site in CuZn-DAS/NC caused by the considerable electron transfers from Zn atoms to the adjacent Cu atoms can reduce the adsorption energy barriers for^(*)COOH and^(*)CO production,improving the activity and CO selectivity.
基金supported by the National Natural Science Foundation of China(51803077,51872204)the National Key Research and Development Program of China(2017YFA0204600)+4 种基金the Natural Science Foundation of Jiangsu Province(BK20180627)Postdoctoral Science Foundation of China(2018M630517,2019T120389)the Ministry of Education(MOE)and the State Administration for Foreign Expert Affairs(SAFEA),111 Project(B13025)the National First-Class Discipline Program of Light Industry Technology and Engineering(LITE2018-19)the Fundamental Research Funds for the Central Universities。
文摘Regulating chemical bonds to balance the adsorption and disassociation of water molecules on catalyst surfaces is crucial for overall water splitting in alkaline solution.Here we report a facile strategy for designing Ni2W4C-W3C Janus structures with abundant Ni-W metallic bonds on surfaces through interfacial engineering.Inserting Ni atoms into the W3C crystals in reaction progress generates a new Ni2 W4C phase,making the inert W atoms in W3C be active sites in Ni2W4C for overall water splitting.The Ni2W4CW3C/carbon nanofibers(Ni2 W4-W3C/CNFs)require overpotentials of 63 mV to reach 10 mA cm^-2 for hydrogen evolution reaction(HER)and 270 mV to reach 30 mA cm^-2 for oxygen evolution reaction(OER)in alkaline electrolyte,respectively.When utilized as both cathode and anode in alkaline solution for overall water splitting,cell voltages of 1.55 and 1.87 V are needed to reach 10 and 100 mA cm^-2,respectively.Density functional theory(DFT)results indicate that the strong interactions between Ni and W increase the local electronic states of W atoms.The Ni2W4C provides active sites for cleaving H-OH bonds,and the W3C facilitates the combination of Hads intermediates into H2 molecules.The in situ electrochemical-Raman results demonstrate that the strong absorption ability for hydroxyl and water molecules and further demonstrate that W atoms are the real active sites.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant nos.51803077,52073124)Natural Science Foundation of Jiangsu Province(Grant nos.BK20180627)+3 种基金Postdoctoral Science Foundation of China(2018M630517,2019T120389)the MOE and SAFEA,111 Project(B13025)the national first-class discipline program of Light Industry Technology and Engineering(LITE2018-19)the Fundamental Research Funds for the Central Universities.
文摘In search of effective and stable bifunctional electrocatalyst for electrocatalytic water splitting is still a major challenge for the highly efficient H_(2) production.Here,we reported a facile strategy to design high-indexed Cu_(3)Pd_(13)_S_(7) nanoparticles(NPs)in situ synthesized on the three-dimensional(3D)carbon nanofibers(CNFs)by combining electrospinning and chemical vapor deposition(CVD)technology.The high-index facets with abundant active sites,the 3D architecture CNFs with high specific surface area and synergistic effect of Cu-Pd-S bonds with strong electron couplings together promote the elec-trocatalytic performance.The Cu_(3)Pd_(13)_S_(7)/CNFs shows excellent electrocatalytic activity with low overpotentials of 52 mV(10 mA cm^(−2))for hydrogen evolution reaction(HER)and 240 mV(10 mA cm^(−2))for oxygen evolution reaction(OER).The excellent protection of Cu_(3)Pd_(13)_S_(7) by CNFs from aggregation and electrolyte corrosion lead to the high stability of Cu_(3)Pd_(13)_S_(7)/CNFs under acidic and alkaline conditions.