Siderite is a prevalent authigenic mineral in siliciclastic rocks, which usually occurred in eodiagensis period and could be used as an indicator of sedimentary environment. Some siderite precipitated in burial depth ...Siderite is a prevalent authigenic mineral in siliciclastic rocks, which usually occurred in eodiagensis period and could be used as an indicator of sedimentary environment. Some siderite precipitated in burial depth with geochemical information of basin fluid evolution. The crystal morphology, geochemical composition, and isotope values are influenced by physical and geochemical environment of precipitation. In this study, samples from the Early Cretaceous of Erlian basin in the northwestern China were collected, and mineralogy, bulk and in-situ geochemistry, C and O isotopes were analyzed to comprehensively investigate the sedimentary and diagenetic environment that the sediments experienced. Six lithofaices with three types of crystal habits were recognized in the siderite-rich sandstone, bundle crystal in spherical forms, blocky rhombs in intergranular pore and cleavage of muscovite, and micro bundle and mosaic crystals aggregates in nodular. The siderite growth proceeds through micro bundle and mosaic crystals to bundle siderite aggregates and then into blocky rhombs. The crystal evolution is also reflected by geochemical composition. The micro bundle and mosaic crystals are Casiderite. The spheritic shaped bundle aggregates are Ca-Mn-siderite. The blocky rhomb siderite shows gray part and bight part with Ca, Mg and Mn varies. Increase of Ca in block rhomb siderite suggests burial and mesodiagenesis, the high content of Mn may have linkage with eogenetic effects. The relatively positive and slightly negative δ13C value indicates meteoric water domination and influence of organic matter evolution in shallow buried time. The narrow ranges negative δ18O value suggest a small span of temperature of siderite formation.展开更多
Recently,a new kind of volcanic rock,felsite porphyry,has been revealed by drilling in Xiangshan area,Jiangxi Province,China.To better understand petrogenesis and magmatic evolution sequence of the Xiangshan volcanic-...Recently,a new kind of volcanic rock,felsite porphyry,has been revealed by drilling in Xiangshan area,Jiangxi Province,China.To better understand petrogenesis and magmatic evolution sequence of the Xiangshan volcanic-intrusive complex,we studied systematic petrology,geochemistry,LA-ICP-MS zircon U–Pb dating,and Hf isotope results of the felsite porphyry.Results show that the felsite porphyry has similar geochemical characteristics to the porphyroclastic rhyolite,which is the predominant lithology of Xiangshan uranium orefield.Felsite porphyry and porphyroclastic rhyolite have high SiO2,Al2O3,and K2O contents,low Na2O,and MgO contents,and slightly negative Eu anomalies.Moreover,these rocks are relatively depleted in large ion lithophile elements(K,Ba,and Sr)and are enriched in high field strength elements(Th,Zr,and Hf).LA-ICP-MS zircon U–Pb dating of the felsite porphyry yielded a crystallization age of 132.2±0.9 Ma,which is coeval to that of the porphyroclastic rhyolite.These ages signified that Xiangshan volcanic-intrusive complex formed in the Early Cretaceous,during which the entire South China was in the back-arc extension tectonic setting related to the subduction of the Pacific Plate under the Euroasian Plate.In-situ zircon Hf isotope data on a felsite porphyry sample show eHf(t)values from-8.82 to-5.11,while the Hf isotope two-stage model age(TDM2-Hf)ranges from 1513 to 1747 Ma.Combined with petrological,mineralogical,geochemistry,and geochronology results of the felsite porphyry,it is concluded that the felsite porphyry in Xiangshan might be originated from the partial melting of the Mesoproterozoic ancient metamorphic rocks,with possible input of small amounts of mantle materials.展开更多
文摘Siderite is a prevalent authigenic mineral in siliciclastic rocks, which usually occurred in eodiagensis period and could be used as an indicator of sedimentary environment. Some siderite precipitated in burial depth with geochemical information of basin fluid evolution. The crystal morphology, geochemical composition, and isotope values are influenced by physical and geochemical environment of precipitation. In this study, samples from the Early Cretaceous of Erlian basin in the northwestern China were collected, and mineralogy, bulk and in-situ geochemistry, C and O isotopes were analyzed to comprehensively investigate the sedimentary and diagenetic environment that the sediments experienced. Six lithofaices with three types of crystal habits were recognized in the siderite-rich sandstone, bundle crystal in spherical forms, blocky rhombs in intergranular pore and cleavage of muscovite, and micro bundle and mosaic crystals aggregates in nodular. The siderite growth proceeds through micro bundle and mosaic crystals to bundle siderite aggregates and then into blocky rhombs. The crystal evolution is also reflected by geochemical composition. The micro bundle and mosaic crystals are Casiderite. The spheritic shaped bundle aggregates are Ca-Mn-siderite. The blocky rhomb siderite shows gray part and bight part with Ca, Mg and Mn varies. Increase of Ca in block rhomb siderite suggests burial and mesodiagenesis, the high content of Mn may have linkage with eogenetic effects. The relatively positive and slightly negative δ13C value indicates meteoric water domination and influence of organic matter evolution in shallow buried time. The narrow ranges negative δ18O value suggest a small span of temperature of siderite formation.
基金“Comprehensive Study of 3D Metallogenic Geologic Environment of Key Zones for Exploration in Xiangshan Uranium Orefield”the sub-project of“Longcan Science and Technology Innovation Demonstration Project”of China National Nuclear Corporation(Project No.:LCD116)。
文摘Recently,a new kind of volcanic rock,felsite porphyry,has been revealed by drilling in Xiangshan area,Jiangxi Province,China.To better understand petrogenesis and magmatic evolution sequence of the Xiangshan volcanic-intrusive complex,we studied systematic petrology,geochemistry,LA-ICP-MS zircon U–Pb dating,and Hf isotope results of the felsite porphyry.Results show that the felsite porphyry has similar geochemical characteristics to the porphyroclastic rhyolite,which is the predominant lithology of Xiangshan uranium orefield.Felsite porphyry and porphyroclastic rhyolite have high SiO2,Al2O3,and K2O contents,low Na2O,and MgO contents,and slightly negative Eu anomalies.Moreover,these rocks are relatively depleted in large ion lithophile elements(K,Ba,and Sr)and are enriched in high field strength elements(Th,Zr,and Hf).LA-ICP-MS zircon U–Pb dating of the felsite porphyry yielded a crystallization age of 132.2±0.9 Ma,which is coeval to that of the porphyroclastic rhyolite.These ages signified that Xiangshan volcanic-intrusive complex formed in the Early Cretaceous,during which the entire South China was in the back-arc extension tectonic setting related to the subduction of the Pacific Plate under the Euroasian Plate.In-situ zircon Hf isotope data on a felsite porphyry sample show eHf(t)values from-8.82 to-5.11,while the Hf isotope two-stage model age(TDM2-Hf)ranges from 1513 to 1747 Ma.Combined with petrological,mineralogical,geochemistry,and geochronology results of the felsite porphyry,it is concluded that the felsite porphyry in Xiangshan might be originated from the partial melting of the Mesoproterozoic ancient metamorphic rocks,with possible input of small amounts of mantle materials.