Grain size is one of the determinants of grain yield,and identifying the genetic loci that control grain size will be helpful for increasing grain yield.In our previous study,a quantitative trait locus(QTL)for grain l...Grain size is one of the determinants of grain yield,and identifying the genetic loci that control grain size will be helpful for increasing grain yield.In our previous study,a quantitative trait locus(QTL)for grain length(GL),QGl.cau-2D.1,was identified from an F2 population developed from the cross between the natural(TAA10)and synthetic(XX329)allohexaploid wheat.In the present study,we mainly fine mapped and validated its genetic effects.To this end,multiple near-isogenic lines(NILs)were obtained through marker-assisted selection with TAA10 as the recurrent parent.The secondary populations derived from 25 heterozygous recombinants were used for fine mapping of QGl.cau-2D.1,and the allele from XX329 significantly increased GL,thousand-grain weight(TGW),total spikelet number per spike(TSN)and spike compactness(SC).Using NILs for XX329(2D+)and TAA10(2D−),we determined the genetic and pleiotropic effects of QGl.cau-2D.1.The target sequences were aligned with the wheat reference genome RefSeq v2.1 and spanned an~0.9 Mb genomic region.TraesCS2D03G0114900(ortholog of Os03g0594700)was predicted as the candidate gene based on whole-genome re-sequencing and expression analyses.In summary,the map-based cloning of QGl.cau-2D.1 will be useful for improving grain weight with enhanced GL and TSN.展开更多
In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro...In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.展开更多
This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is establi...This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle.展开更多
Quantum secure communications could securely transmit quantum information by using quantum resource.Recently,novel applications such as bidirectional and asymmetric quantum protocols have been developed.In this paper,...Quantum secure communications could securely transmit quantum information by using quantum resource.Recently,novel applications such as bidirectional and asymmetric quantum protocols have been developed.In this paper,we propose a new method for generating entanglement which is highly useful for multiparty quantum communications such as teleportation and Remote State Preparation(RSP).As one of its applications,we propose a new type of quantum secure communications,i.e.cyclic RSP protocols.Starting from a four-party controlled cyclic RSP protocol of one-qubit states,we show that this cyclic protocol can be generalized to a multiparty controlled cyclic RSP protocol for preparation of arbitrary qubit states.We point out that previous bidirectional and asymmetric protocols can be regarded as a simpler form of our cyclic RSP protocols.展开更多
Early-stage brain metastasis of breast cancer(BMBC), due to the existence of an intact blood–brain barrier(BBB), is one of the deadliest neurologic complications. To improve the efficacy of chemotherapy for BMBC, a T...Early-stage brain metastasis of breast cancer(BMBC), due to the existence of an intact blood–brain barrier(BBB), is one of the deadliest neurologic complications. To improve the efficacy of chemotherapy for BMBC, a Trojan horse strategy-based nanocarrier has been developed by integrating the cell membrane of a brain-homing cancer cell and a polymeric drug depot. With the camouflage of a MDA-MB-231/Br cell membrane, doxorubicin-loaded poly(D, L-lactic-co-glycolic acid) nanoparticle(DOX-PLGA@CM) shows enhanced cellular uptake and boosted killing potency for MDA-MB-231/Br cells. Furthermore, DOX-PLGA@CM is equipped with naturally selected molecules for BBB penetration, as evidenced by its boosted capacity in entering the brain of both healthy and early-stage BMBC mouse models. Consequently, DOX-PLGA@CM effectively reaches the metastatic tumor lesions in the brain, slows down cancer progression, reduces tumor burden, and extends the survival time for the BMBC animal.Furthermore, the simplicity and easy scale-up of the design opens a new window for the treatment of BMBC and other brain metastatic cancers.展开更多
In near-infrared spectroscopy,the traditional feature band extraction method has certain limitations.Therefore,a band extraction method named the three-step extraction method was proposed.This method combines characte...In near-infrared spectroscopy,the traditional feature band extraction method has certain limitations.Therefore,a band extraction method named the three-step extraction method was proposed.This method combines characteristic absorption bands and correlation coefficients to select characteristic bands corresponding to various spectral forms and then uses stepwise regression to eliminate meaningless variables.Partial least squares regression(PLSR)and extreme learning machine(ELM)models were used to verify the effect of the band extraction method.Results show that the differential transformation of the spectrum can effectively improve the correlation between the spectrum and nickel(Ni)content.Most correlation coefficients were above 0.7 and approximately 20%higher than those of other transformation methods.The model effect established by the feature variable selection method based on comprehensive spectral transformation is only slightly affected by the spectral transformation form.Infive types of spectral transformation,the RPD values of the proposed method were all within the same level.The RPD values of the PLSR model were concentrated between 1.6 and 1.8,and those of the ELM model were between 2.5 and2.9,indicating that this method is beneficial for extracting more complete spectral features.The combination of the three-step extraction method and ELM algorithm can effectively retain important bands associated with the Ni content of the soil.The model based on the spectral band selected by the three-step extraction method has better prediction ability than the other models.The ELM model of the first-order differential transformation has the best prediction accuracy(RP^2=0.923,RPD=3.634).The research results provide some technical support for monitoring heavy metal content spectrum in local soils.展开更多
Bacterial blight(BB), which is caused by Xanthomonas oryzae pv. oryzae(Xoo), is an important rice disease responsible for significant yield losses. In the rice-growing regions of South China where BB outbreaks are com...Bacterial blight(BB), which is caused by Xanthomonas oryzae pv. oryzae(Xoo), is an important rice disease responsible for significant yield losses. In the rice-growing regions of South China where BB outbreaks are common, the resistance of cultivars with BB resistance genes Xa4 and Xa21 has been lost because of rapid changes in the Xoo population structure and virulence. In this study, 421 diverse rice accessions were evaluated regarding their resistance to two Xoo strains, namely GD1358(C5) and IV, which are prevalent pathotypes in South China and overcame the resistance of Xa4 and Xa21, respectively. Using the 4.8 mio filtered SNP dataset, we conducted a genome-wide association study, which identified 13 loci associated with BB resistance, including eight new quantitative trait loci(QTL) and five QTL harboring known BB resistance genes: Xa3/Xa26, xa5, Xa35(t), Xa36(t), Xa40, Xa43(t), and xa44(t). Intriguingly, a steep peak was detected on chromosomes 5 and 11. Six QTL including three new ones, were distributed on chromosome 11, whereas a new QTL q BB5.1 and a known QTL were detected on chromosome 5. Haplotype analyses indicated that the LOC;s05 g01610(Os PRAF2) gene within the q BB5.1 region, which encodes a PRAF protein, is associated with BB resistance. Furthermore, Os PRAF2 knockout lines generated using the CRISPR-Cpf1 system were significantly more resistant to Xoo strains than the wild-type plants. Our results provide researchers and breeders with useful information regarding QTL and gene resources,which may be relevant for developing new BB-resistant rice cultivars.展开更多
The commercialization of electrolytic MnO_(2)-Zn batteries is highly applauded owing to the advantages of cost-effectiveness,high safety,high energy density,and durable working performance.However,due to the low rever...The commercialization of electrolytic MnO_(2)-Zn batteries is highly applauded owing to the advantages of cost-effectiveness,high safety,high energy density,and durable working performance.However,due to the low reversibility of the cathode MnO_(2)/Mn^(2+)chemistry at high areal capacities and the severe Zn anode corrosion,the practical application of MnO_(2)-Zn batteries is hampered by inadequate lifespan.Leveraging the full advantage of an iodine redox mediator,here we design a highly rechargeable electrolytic MnO_(2)-Zn battery with a high areal capacity.The MnO_(2)-Zn battery coupled with an iodine mediator in a mild electrolyte shows a high discharge voltage of 1.85 V and a robust areal capacity of 10 mAh cm^(-2)under a substantial discharge current density of 160 mA cm^(-2).The MnO_(2)/I_(2)-Zn battery with an areal capacity of 10 mAh cm^(-2)exhibits prolonged stability of over 950 cycles under a high-capacity retention of~94%.The scaled-up MnO_(2)/I_(2)-Zn battery reveals a stable cycle life under a cell capacity of~600 mAh.Moreover,our constructed MnO_(2)/I_(2)-Zn battery demonstrates a practical energy density of~37 Wh kg^(-1)and a competitive energy cost of<18 US$kWh^(-1)by taking into account the cathode,anode,and electrolyte.The MnO_(2)/I_(2)-Zn battery,with its remarkable reversibility and reasonable energy density,enlightens a new arena of large-scale energy storage devices.展开更多
This paper emphatically sums up the problems existing in the implementation of"1+X"certificate system by taking horticulture major in higher vocational colleges as an example.From the point of view of the im...This paper emphatically sums up the problems existing in the implementation of"1+X"certificate system by taking horticulture major in higher vocational colleges as an example.From the point of view of the improvement of"1+X"certificate system,the reform of talent training program,the improvement of teachers ability and summing up experience,this paper puts forward the updated working mode and ideas to provide strategies for accelerating the development of vocational education in southern Xinjiang.展开更多
Safety is essential when building a strong transportation system.As a key development direction in the global railway system,the intelligent railway has safety at its core,making safety a top priority while pursuing t...Safety is essential when building a strong transportation system.As a key development direction in the global railway system,the intelligent railway has safety at its core,making safety a top priority while pursuing the goals of efficiency,convenience,economy,and environmental friendliness.This paper describes the state of the art and proposes a system architecture for intelligent railway systems.It also focuses on the development of railway safety technology at home and abroad,and proposes the active safety method and technology system based on advanced theoretical methods such as the in-depth integration of cyber–physical systems(CPS),data-driven models,and intelligent computing.Finally,several typical applications are demonstrated to verify the advancement and feasibility of active safety technology in intelligent railway systems.展开更多
In order to obtain Pb content in soil quickly and efficiently,a multivariate linear regression(MLR) and a principal component regression(PCR) Pb content estimation model were established on the basis of hyperspectral ...In order to obtain Pb content in soil quickly and efficiently,a multivariate linear regression(MLR) and a principal component regression(PCR) Pb content estimation model were established on the basis of hyperspectral techniques,and their applicability in different soil types was evaluated.Results indicated that Pb exhibited strong spatial heterogeneity in the study area,and more than 82% of the samples exceeded the background value.In addition,the pollution range was large.Pb was sensitive in the nearinfrared band,and the correlation of absorbance(AB) was most significant of all the transformed forms.Both models achieved optimal stability and reliability when AB was used as an independent variable.Compared with the PCR model,the stability,fitting accuracy,and predictive power of the MLR model were superior with a coefficient of determination,root mean square error,and mean relative error of 0.724%,24.92%,and 28.22%,respectively.Both models could be applied to different soil types;however,MLR had better applicability compared with PCR.The PCR model that distinguished different soil types had better reliability than one that did not.Thus,the model established via hyperspectral techniques can achieve largearea,rapid,and efficient soil Pb content monitoring,which can provide technical support for the treatment of heavy metal pollution in soil.展开更多
The selection of power transformer is very important to power sector. Most methods are utilized according to the initial cost and don’t consider the synthetical evaluation of economy and technology. Based on previous...The selection of power transformer is very important to power sector. Most methods are utilized according to the initial cost and don’t consider the synthetical evaluation of economy and technology. Based on previous research, this paper addresses a new practical probabilistic life cycle cost model. Then, in order to demonstrate the practicability of probabilistic life cycle cost for the power transformer, illustrative investment alternatives of actual power transformers are discussed. From the result of the numerical investigation, it may be positively stated that the optimum investment alternative for the power transformer based on the probabilistic life cycle cost model proposed in this study will lead to a more rational, economical and effective procedure compared with the conventional method only considering the initial cost.展开更多
The Huangqi Guizhi Wuwu Decoction(HQGZWWT)is composed of Huangqi(Astragali Radix),Shaoyao(Paeoniae Radix Alba),Guizhi(Cinnamomi Ramulus),Shengjiang(Zingiberis Rhizoma Recens),and Dazao(Jujubae Fructus)which has variou...The Huangqi Guizhi Wuwu Decoction(HQGZWWT)is composed of Huangqi(Astragali Radix),Shaoyao(Paeoniae Radix Alba),Guizhi(Cinnamomi Ramulus),Shengjiang(Zingiberis Rhizoma Recens),and Dazao(Jujubae Fructus)which has various pharmacological anti-inflammatory,analgesic,antioxidant,antitumor,lipid-lowering,and immunity-regulating activities.It has certain advantages in the treatment of orthopaedic diseases,such as cervical spondylosis,scapulohumeral periarthritis,lumbar disc herniation,knee osteoarthritis,rheumatoid arthritis,myofascial pain syndrome,etc.,with outstanding clinical efficacy,few adverse reactions,and high patient compliance.However,modern pharmacological researches on the whole prescription of HQGZWWT are insufficient and the therapeutic targets are not clear which needs further exploration.Besides,this prescription cannot treat ll orthopaedic diseases,so we should adhere to the thinking of four diagnostics in traditional Chinese medicine(TCM),select prescriptions based on syndrome differentiation,closely follow the pathogenesis,innovate and expand its scope of application,reflect the application advantages of this prescription in orthopaedics and traumatology and improve the total clinical efficiency.展开更多
Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Com...Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Compared with conventional steam boilers,S-CO_(2) has different heat transfer characteristics,it is easy to cause the temperature of the cooling wall of the boiler to rise,which leads to higher combustion gas temperature in the furnace,higher NOX generation concentration.The adoption of flue gas recirculation has a significance impact on the combustion process of pulverized coal in the boiler,and it is the most effective ways to reduce the emission of NOX and the combustion temperature in the boiler.This paper takes 1000MW S-CO_(2) T-type coal-fired boiler as the research target to investigate the combustion and NOX generation characteristics of S-CO_(2) coal-fired boilers under flue gas recirculation condition,the influence of recirculated flue gas distribution along the furnace height on the characteristics of NOX formation and the combustion of pulverized coal.The results show that the recirculated flue gas distribution has the great impact on the concentration of NOX at the boiler outlet.When the bottom recirculation flue gas rate is gradually increased,the average temperature of the lower boiler decreases and the average temperature of the upper boiler increases slightly;The concentration of NOx at the furnace outlet increases.展开更多
Objectives To study the effects of applying locking compression plates in the treatment of patients with limb fractures on postoperative fracture healing.Methods:115 patients with limb fractures who were treated in ou...Objectives To study the effects of applying locking compression plates in the treatment of patients with limb fractures on postoperative fracture healing.Methods:115 patients with limb fractures who were treated in our hospital from November 2019 to November 2020 were selected.In order to study the effective treatment method,the random-number table method was used in this study to divide the patients into two groups,namely the experimental group and the control group,and the locking compression plate treatment method and the pure plate and screw internal fixation treatment method were administered respectively to study their clinical application effects.Results:Compared with the control group,patients in the experimental group had a lower incidence of complications,shorter hospitalizations and shorter recovery time.Meanwhile,the experimental group had a better quality of recovery,and all data were significantly different from those of the control group,P<0.05,the intervention effect of the experimental group was better.Conclusion:The application of the locking compression plate in the treatment of patients with limb fractures is more conducive to promoting the postoperative healing of the patients'fractures,reducing the incidence of postoperative complications,and promoting the rapid recovery of patients,which has positive significance for clinical development.展开更多
Precisely controlled spatial distributions of artificial light-harvesting systems in aqueous media are of significant importance for mimicking natural light-harvesting systems;however,they are often restrained by the ...Precisely controlled spatial distributions of artificial light-harvesting systems in aqueous media are of significant importance for mimicking natural light-harvesting systems;however,they are often restrained by the solubility and the aggregation-caused quenching effect of the hydrophobic chromophores.Herein,we report one highly efficient artificial light-harvesting system based on peptoid nanotubes that mimic the hierarchical cylindrical structure of natural systems.The high crystallinity of these nanotubes enabled the organization of arrays of donor chromophores with precisely controlled spatial distributions,favoring an efficient Förster resonance energy transfer(FRET)process in aqueous media.This FRET system exhibits an extremely high efficiency of 98.6%with a fluorescence quantum yield of 40%and an antenna effect of 29.9.We further demonstrated the use of this artificial light-harvesting system for quantifying miR-210 within cancer cells.The fluorescence intensity ratio of donor to acceptor is linearly related to the concentration of intercellular miR-210 in the range of 3.3–156 copies/cell.Such high sensitivity in intracellular detection of miR-210 using this artificial light-harvesting system offers a great opportunity and pathways for biological imaging and detection,and for the further creation of microRNA(miRNA)toolbox for quantitative epigenetics and personalized medicine.展开更多
Because of its high adsorption capacity, biochar has been used to stabilize metals when remediating contaminated soils; to date, however, it has seldom been used to remediate contaminated sediment. A biochar was used ...Because of its high adsorption capacity, biochar has been used to stabilize metals when remediating contaminated soils; to date, however, it has seldom been used to remediate contaminated sediment. A biochar was used as a stabilization agent to remediate Cu-and Pb-contaminated sediments, collected from three locations in or close to Beijing. The sediments were mixed with a palm sawdust gasified biochar at a range of weight ratios(2.5%, 5%, and 10%) and incubated for 10, 30, or 60 days. The performance of the different treatments and the heavy metal fractions in the sediments were assessed using four extraction methods, including diffusive gradients in thin films, the porewater concentration, a sequential extraction, and the toxicity characteristic leaching procedure. The results showed that biochar could enhance the stability of heavy metals in contaminated sediments. The degree of stability increased as both the dose of biochar and the incubation time increased. The sediment p H and the morphology of the metal crystals adsorbed onto the biochar changed as the contact time increased. Our results showed that adsorption,metal crystallization, and the p H were the main controls on the stabilization of metals in contaminated sediment by biochar.展开更多
基金supported by the National Key Research and Development Program of China(32172069).
文摘Grain size is one of the determinants of grain yield,and identifying the genetic loci that control grain size will be helpful for increasing grain yield.In our previous study,a quantitative trait locus(QTL)for grain length(GL),QGl.cau-2D.1,was identified from an F2 population developed from the cross between the natural(TAA10)and synthetic(XX329)allohexaploid wheat.In the present study,we mainly fine mapped and validated its genetic effects.To this end,multiple near-isogenic lines(NILs)were obtained through marker-assisted selection with TAA10 as the recurrent parent.The secondary populations derived from 25 heterozygous recombinants were used for fine mapping of QGl.cau-2D.1,and the allele from XX329 significantly increased GL,thousand-grain weight(TGW),total spikelet number per spike(TSN)and spike compactness(SC).Using NILs for XX329(2D+)and TAA10(2D−),we determined the genetic and pleiotropic effects of QGl.cau-2D.1.The target sequences were aligned with the wheat reference genome RefSeq v2.1 and spanned an~0.9 Mb genomic region.TraesCS2D03G0114900(ortholog of Os03g0594700)was predicted as the candidate gene based on whole-genome re-sequencing and expression analyses.In summary,the map-based cloning of QGl.cau-2D.1 will be useful for improving grain weight with enhanced GL and TSN.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472137 and U2141246)。
文摘In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.
基金the National Natural Science Foundation of China(Grant No.11472137).
文摘This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle.
文摘Quantum secure communications could securely transmit quantum information by using quantum resource.Recently,novel applications such as bidirectional and asymmetric quantum protocols have been developed.In this paper,we propose a new method for generating entanglement which is highly useful for multiparty quantum communications such as teleportation and Remote State Preparation(RSP).As one of its applications,we propose a new type of quantum secure communications,i.e.cyclic RSP protocols.Starting from a four-party controlled cyclic RSP protocol of one-qubit states,we show that this cyclic protocol can be generalized to a multiparty controlled cyclic RSP protocol for preparation of arbitrary qubit states.We point out that previous bidirectional and asymmetric protocols can be regarded as a simpler form of our cyclic RSP protocols.
基金the National Institutes of Health(1R01AG054839-01A1,1R41CA254500-01A1,and 1R21CA252360-01)for financial support of the research。
文摘Early-stage brain metastasis of breast cancer(BMBC), due to the existence of an intact blood–brain barrier(BBB), is one of the deadliest neurologic complications. To improve the efficacy of chemotherapy for BMBC, a Trojan horse strategy-based nanocarrier has been developed by integrating the cell membrane of a brain-homing cancer cell and a polymeric drug depot. With the camouflage of a MDA-MB-231/Br cell membrane, doxorubicin-loaded poly(D, L-lactic-co-glycolic acid) nanoparticle(DOX-PLGA@CM) shows enhanced cellular uptake and boosted killing potency for MDA-MB-231/Br cells. Furthermore, DOX-PLGA@CM is equipped with naturally selected molecules for BBB penetration, as evidenced by its boosted capacity in entering the brain of both healthy and early-stage BMBC mouse models. Consequently, DOX-PLGA@CM effectively reaches the metastatic tumor lesions in the brain, slows down cancer progression, reduces tumor burden, and extends the survival time for the BMBC animal.Furthermore, the simplicity and easy scale-up of the design opens a new window for the treatment of BMBC and other brain metastatic cancers.
基金supported jointly by the National Key Research Program of China (Nos. 2016YFC0502102, 2016YFC0502300)‘‘Western light’’ talent training plan (Class A)+5 种基金Chinese academy of science and technology services network program (No. KFJ-STS-ZDTP-036)international cooperation agency international partnership program (Nos. 132852KYSB20170029, 2014-3)Guizhou high-level innovative talent training program ‘‘ten’’ level talents program (No. 2016-5648)United fund of karst science research center (No. U1612441)International cooperation research projects of the national natural science fund committee (Nos. 41571130074, 41571130042)Science and Technology Plan of Guizhou Province of China (No. 2017–2966)
文摘In near-infrared spectroscopy,the traditional feature band extraction method has certain limitations.Therefore,a band extraction method named the three-step extraction method was proposed.This method combines characteristic absorption bands and correlation coefficients to select characteristic bands corresponding to various spectral forms and then uses stepwise regression to eliminate meaningless variables.Partial least squares regression(PLSR)and extreme learning machine(ELM)models were used to verify the effect of the band extraction method.Results show that the differential transformation of the spectrum can effectively improve the correlation between the spectrum and nickel(Ni)content.Most correlation coefficients were above 0.7 and approximately 20%higher than those of other transformation methods.The model effect established by the feature variable selection method based on comprehensive spectral transformation is only slightly affected by the spectral transformation form.Infive types of spectral transformation,the RPD values of the proposed method were all within the same level.The RPD values of the PLSR model were concentrated between 1.6 and 1.8,and those of the ELM model were between 2.5 and2.9,indicating that this method is beneficial for extracting more complete spectral features.The combination of the three-step extraction method and ELM algorithm can effectively retain important bands associated with the Ni content of the soil.The model based on the spectral band selected by the three-step extraction method has better prediction ability than the other models.The ELM model of the first-order differential transformation has the best prediction accuracy(RP^2=0.923,RPD=3.634).The research results provide some technical support for monitoring heavy metal content spectrum in local soils.
基金supported by the National Natural Science Foundation of China(31661143009 and 31571632)the CAAS Innovative Team Awardthe Bill&Melinda Gates Foundation(OPP51587)。
文摘Bacterial blight(BB), which is caused by Xanthomonas oryzae pv. oryzae(Xoo), is an important rice disease responsible for significant yield losses. In the rice-growing regions of South China where BB outbreaks are common, the resistance of cultivars with BB resistance genes Xa4 and Xa21 has been lost because of rapid changes in the Xoo population structure and virulence. In this study, 421 diverse rice accessions were evaluated regarding their resistance to two Xoo strains, namely GD1358(C5) and IV, which are prevalent pathotypes in South China and overcame the resistance of Xa4 and Xa21, respectively. Using the 4.8 mio filtered SNP dataset, we conducted a genome-wide association study, which identified 13 loci associated with BB resistance, including eight new quantitative trait loci(QTL) and five QTL harboring known BB resistance genes: Xa3/Xa26, xa5, Xa35(t), Xa36(t), Xa40, Xa43(t), and xa44(t). Intriguingly, a steep peak was detected on chromosomes 5 and 11. Six QTL including three new ones, were distributed on chromosome 11, whereas a new QTL q BB5.1 and a known QTL were detected on chromosome 5. Haplotype analyses indicated that the LOC;s05 g01610(Os PRAF2) gene within the q BB5.1 region, which encodes a PRAF protein, is associated with BB resistance. Furthermore, Os PRAF2 knockout lines generated using the CRISPR-Cpf1 system were significantly more resistant to Xoo strains than the wild-type plants. Our results provide researchers and breeders with useful information regarding QTL and gene resources,which may be relevant for developing new BB-resistant rice cultivars.
基金W.C.acknowledges the startup funds from USTC(Grant#KY2060000150)the Fundamental Research Funds for the Central Universities(WK2060000040).
文摘The commercialization of electrolytic MnO_(2)-Zn batteries is highly applauded owing to the advantages of cost-effectiveness,high safety,high energy density,and durable working performance.However,due to the low reversibility of the cathode MnO_(2)/Mn^(2+)chemistry at high areal capacities and the severe Zn anode corrosion,the practical application of MnO_(2)-Zn batteries is hampered by inadequate lifespan.Leveraging the full advantage of an iodine redox mediator,here we design a highly rechargeable electrolytic MnO_(2)-Zn battery with a high areal capacity.The MnO_(2)-Zn battery coupled with an iodine mediator in a mild electrolyte shows a high discharge voltage of 1.85 V and a robust areal capacity of 10 mAh cm^(-2)under a substantial discharge current density of 160 mA cm^(-2).The MnO_(2)/I_(2)-Zn battery with an areal capacity of 10 mAh cm^(-2)exhibits prolonged stability of over 950 cycles under a high-capacity retention of~94%.The scaled-up MnO_(2)/I_(2)-Zn battery reveals a stable cycle life under a cell capacity of~600 mAh.Moreover,our constructed MnO_(2)/I_(2)-Zn battery demonstrates a practical energy density of~37 Wh kg^(-1)and a competitive energy cost of<18 US$kWh^(-1)by taking into account the cathode,anode,and electrolyte.The MnO_(2)/I_(2)-Zn battery,with its remarkable reversibility and reasonable energy density,enlightens a new arena of large-scale energy storage devices.
基金Supported by School-level Cultivation Project of Hetian Vocational and Technical College(HZ-2022-14)Science and Technology Research and Development Plan Project in Hetian Area(20220219).
文摘This paper emphatically sums up the problems existing in the implementation of"1+X"certificate system by taking horticulture major in higher vocational colleges as an example.From the point of view of the improvement of"1+X"certificate system,the reform of talent training program,the improvement of teachers ability and summing up experience,this paper puts forward the updated working mode and ideas to provide strategies for accelerating the development of vocational education in southern Xinjiang.
基金supported by the 2021 Chinese Academy of Engineering(CAE)International Top-level Forum on Engineering Science and Technology,“Safety and Governance of the High-Speed Railway”。
文摘Safety is essential when building a strong transportation system.As a key development direction in the global railway system,the intelligent railway has safety at its core,making safety a top priority while pursuing the goals of efficiency,convenience,economy,and environmental friendliness.This paper describes the state of the art and proposes a system architecture for intelligent railway systems.It also focuses on the development of railway safety technology at home and abroad,and proposes the active safety method and technology system based on advanced theoretical methods such as the in-depth integration of cyber–physical systems(CPS),data-driven models,and intelligent computing.Finally,several typical applications are demonstrated to verify the advancement and feasibility of active safety technology in intelligent railway systems.
基金supported jointly by National Key Research Program of China (Nos. 2016YFC0502300 and 2016YFC0502102)Chinese Academy of Science, and Technology Services Network Program (No. KFJ-STS-ZDTP-036)+4 种基金International Cooperation Agency International Partnership Program (Nos. 132852KYSB20170029, 2014-3)Guizhou High-level Innovative Talent Training Program “Ten” Level Talents Program (No. 2016-5648)United Fund of Karst Science Research Center (No. U1612441)International Cooperation Research Projects of the National Natural Science Fund Committee (Nos. 41571130074 and 41571130042)Science and Technology Plan of Guizhou Province of China (No. 2017–2966)
文摘In order to obtain Pb content in soil quickly and efficiently,a multivariate linear regression(MLR) and a principal component regression(PCR) Pb content estimation model were established on the basis of hyperspectral techniques,and their applicability in different soil types was evaluated.Results indicated that Pb exhibited strong spatial heterogeneity in the study area,and more than 82% of the samples exceeded the background value.In addition,the pollution range was large.Pb was sensitive in the nearinfrared band,and the correlation of absorbance(AB) was most significant of all the transformed forms.Both models achieved optimal stability and reliability when AB was used as an independent variable.Compared with the PCR model,the stability,fitting accuracy,and predictive power of the MLR model were superior with a coefficient of determination,root mean square error,and mean relative error of 0.724%,24.92%,and 28.22%,respectively.Both models could be applied to different soil types;however,MLR had better applicability compared with PCR.The PCR model that distinguished different soil types had better reliability than one that did not.Thus,the model established via hyperspectral techniques can achieve largearea,rapid,and efficient soil Pb content monitoring,which can provide technical support for the treatment of heavy metal pollution in soil.
文摘The selection of power transformer is very important to power sector. Most methods are utilized according to the initial cost and don’t consider the synthetical evaluation of economy and technology. Based on previous research, this paper addresses a new practical probabilistic life cycle cost model. Then, in order to demonstrate the practicability of probabilistic life cycle cost for the power transformer, illustrative investment alternatives of actual power transformers are discussed. From the result of the numerical investigation, it may be positively stated that the optimum investment alternative for the power transformer based on the probabilistic life cycle cost model proposed in this study will lead to a more rational, economical and effective procedure compared with the conventional method only considering the initial cost.
基金funded by the Project of Shaanxi Adminis-tration of Traditional Chinese Medicine(2021GJ-L.C011)and the Hosital-Level
文摘The Huangqi Guizhi Wuwu Decoction(HQGZWWT)is composed of Huangqi(Astragali Radix),Shaoyao(Paeoniae Radix Alba),Guizhi(Cinnamomi Ramulus),Shengjiang(Zingiberis Rhizoma Recens),and Dazao(Jujubae Fructus)which has various pharmacological anti-inflammatory,analgesic,antioxidant,antitumor,lipid-lowering,and immunity-regulating activities.It has certain advantages in the treatment of orthopaedic diseases,such as cervical spondylosis,scapulohumeral periarthritis,lumbar disc herniation,knee osteoarthritis,rheumatoid arthritis,myofascial pain syndrome,etc.,with outstanding clinical efficacy,few adverse reactions,and high patient compliance.However,modern pharmacological researches on the whole prescription of HQGZWWT are insufficient and the therapeutic targets are not clear which needs further exploration.Besides,this prescription cannot treat ll orthopaedic diseases,so we should adhere to the thinking of four diagnostics in traditional Chinese medicine(TCM),select prescriptions based on syndrome differentiation,closely follow the pathogenesis,innovate and expand its scope of application,reflect the application advantages of this prescription in orthopaedics and traumatology and improve the total clinical efficiency.
基金This paper is supported by the National Key R&D Program of China(2017YFB0601805).
文摘Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Compared with conventional steam boilers,S-CO_(2) has different heat transfer characteristics,it is easy to cause the temperature of the cooling wall of the boiler to rise,which leads to higher combustion gas temperature in the furnace,higher NOX generation concentration.The adoption of flue gas recirculation has a significance impact on the combustion process of pulverized coal in the boiler,and it is the most effective ways to reduce the emission of NOX and the combustion temperature in the boiler.This paper takes 1000MW S-CO_(2) T-type coal-fired boiler as the research target to investigate the combustion and NOX generation characteristics of S-CO_(2) coal-fired boilers under flue gas recirculation condition,the influence of recirculated flue gas distribution along the furnace height on the characteristics of NOX formation and the combustion of pulverized coal.The results show that the recirculated flue gas distribution has the great impact on the concentration of NOX at the boiler outlet.When the bottom recirculation flue gas rate is gradually increased,the average temperature of the lower boiler decreases and the average temperature of the upper boiler increases slightly;The concentration of NOx at the furnace outlet increases.
文摘Objectives To study the effects of applying locking compression plates in the treatment of patients with limb fractures on postoperative fracture healing.Methods:115 patients with limb fractures who were treated in our hospital from November 2019 to November 2020 were selected.In order to study the effective treatment method,the random-number table method was used in this study to divide the patients into two groups,namely the experimental group and the control group,and the locking compression plate treatment method and the pure plate and screw internal fixation treatment method were administered respectively to study their clinical application effects.Results:Compared with the control group,patients in the experimental group had a lower incidence of complications,shorter hospitalizations and shorter recovery time.Meanwhile,the experimental group had a better quality of recovery,and all data were significantly different from those of the control group,P<0.05,the intervention effect of the experimental group was better.Conclusion:The application of the locking compression plate in the treatment of patients with limb fractures is more conducive to promoting the postoperative healing of the patients'fractures,reducing the incidence of postoperative complications,and promoting the rapid recovery of patients,which has positive significance for clinical development.
基金supported by the U.S.Department of Energy,Office of Basic Energy Sciences,Division of Materials Science and Engineering under an award FWP 65357 at Pacific Northwest National Laboratory(PNNL)the Cougar Cage Fund for the work of biological imaging and detection of microRNA.Development of peptoid synthesis capabilities was supported by the Materials Synthesis and Simulation Across Scales(MS3)Initiative through the Laboratory Directed Research and Development(LDRD)program at PNNL.XRD work was conducted at the Advanced Light Source(ALS)of Lawrence Berkeley National Laboratory+1 种基金supported by the Office of Science(No.DE-AC02-05CH11231)PNNL is multi-program national laboratory operated for Department of Energy by Battelle(No.DE-AC05-76RL01830).
文摘Precisely controlled spatial distributions of artificial light-harvesting systems in aqueous media are of significant importance for mimicking natural light-harvesting systems;however,they are often restrained by the solubility and the aggregation-caused quenching effect of the hydrophobic chromophores.Herein,we report one highly efficient artificial light-harvesting system based on peptoid nanotubes that mimic the hierarchical cylindrical structure of natural systems.The high crystallinity of these nanotubes enabled the organization of arrays of donor chromophores with precisely controlled spatial distributions,favoring an efficient Förster resonance energy transfer(FRET)process in aqueous media.This FRET system exhibits an extremely high efficiency of 98.6%with a fluorescence quantum yield of 40%and an antenna effect of 29.9.We further demonstrated the use of this artificial light-harvesting system for quantifying miR-210 within cancer cells.The fluorescence intensity ratio of donor to acceptor is linearly related to the concentration of intercellular miR-210 in the range of 3.3–156 copies/cell.Such high sensitivity in intracellular detection of miR-210 using this artificial light-harvesting system offers a great opportunity and pathways for biological imaging and detection,and for the further creation of microRNA(miRNA)toolbox for quantitative epigenetics and personalized medicine.
基金supported by the Fundamental Research Funds for the Central Universities(Grant Nos.KY2060000150,GG2060127001,and WK2060000040).
文摘Strong interaction between positively charged Mn2+ions and solvent molecules impedes manganese plating process,enabling previous manganese metal batteries non-rechargeable.Now,an innovative halogen-mediated strategy is revealed effective to make manganese metal batteries highly reversible.
基金supported by the Science and Technology Project of Beijing (No. D161100000216001)the National Science Foundation of China (No. 41672227)
文摘Because of its high adsorption capacity, biochar has been used to stabilize metals when remediating contaminated soils; to date, however, it has seldom been used to remediate contaminated sediment. A biochar was used as a stabilization agent to remediate Cu-and Pb-contaminated sediments, collected from three locations in or close to Beijing. The sediments were mixed with a palm sawdust gasified biochar at a range of weight ratios(2.5%, 5%, and 10%) and incubated for 10, 30, or 60 days. The performance of the different treatments and the heavy metal fractions in the sediments were assessed using four extraction methods, including diffusive gradients in thin films, the porewater concentration, a sequential extraction, and the toxicity characteristic leaching procedure. The results showed that biochar could enhance the stability of heavy metals in contaminated sediments. The degree of stability increased as both the dose of biochar and the incubation time increased. The sediment p H and the morphology of the metal crystals adsorbed onto the biochar changed as the contact time increased. Our results showed that adsorption,metal crystallization, and the p H were the main controls on the stabilization of metals in contaminated sediment by biochar.