Fusarium crown rot(FCR) is a soilborne disease causing severe yield losses in many wheat-growing areas of the world. Diseased plants show browning and necrosis of roots and stems causing white heads at maturity. Littl...Fusarium crown rot(FCR) is a soilborne disease causing severe yield losses in many wheat-growing areas of the world. Diseased plants show browning and necrosis of roots and stems causing white heads at maturity. Little is known about the molecular processes employed by wheat roots to respond to the disease. We characterized morphological, transcriptional and hormonal changes in wheat seedling roots following challenge with Fusarium pseudograminearum(Fp), the main pathogen of FCR. The pathogen inhibited root development to various extents depending on plants' resistance level. Many genes responsive to FCR infection in wheat roots were enriched in plant hormone pathways. The contents of compounds involved in biosynthesis and metabolism of jasmonic acid, salicylic acid, cytokinin and auxin were drastically changed in roots at five days post-inoculation. Presoaking seeds in methyl jasmonate for 24 h promoted FCR resistance, whereas presoaking with cytokinin 6-benzylaminopurine made plants more susceptible. Overexpression of TaOPR3, a gene involved in jasmonic acid biosynthesis, enhanced plant resistance as well as root and shoot growth during infection.展开更多
As a cool season crop, wheat(Triticum aestivum L.) has an optimal daytime growing temperature of 15 ℃ during the reproductive stage. With global climate change, heat stress is becoming an increasingly severe constrai...As a cool season crop, wheat(Triticum aestivum L.) has an optimal daytime growing temperature of 15 ℃ during the reproductive stage. With global climate change, heat stress is becoming an increasingly severe constraint on wheat production. In this review, we summarize recent progress in understanding the molecular mechanisms of heat tolerance in wheat. We firstly describe the impact of heat tolerance on morphology and physiology and its potential effect on agronomic traits. We then review recent discoveries in determining the genetic and molecular factors affecting heat tolerance, including the effects of phytohormone signaling and epigenetic regulation. Finally, we discuss integrative strategies to improve heat tolerance by utilization of existing germplasm including modern cultivars, landraces and related species.展开更多
Hexaploid triticale(×Triticosecale,AABBRR)is an important forage crop and a promising energy plant.Transferring D-genome chromosomes or segments from common wheat(Triticum aestivum)into hexaploid triticale is att...Hexaploid triticale(×Triticosecale,AABBRR)is an important forage crop and a promising energy plant.Transferring D-genome chromosomes or segments from common wheat(Triticum aestivum)into hexaploid triticale is attractive in improving its economically important traits.Here,a hexaploid triticale 6D(6A)substitution line Lin 456 derived from the cross between the octoploid triticale line H400 and the hexaploid wheat Lin 56 was identified and analyzed by genomic in situ hybridization(GISH),fluorescence in situ hybridization(FISH),and molecular markers.The GISH analysis showed that Lin 456 is a hexaploid triticalewith 14 rye(Secale cereale)chromosomes and 28 wheat chromosomes,whereas non-denaturing fluorescence in situ hybridization(ND-FISH)and molecular marker analysis revealed that it is a 6D(6A)substitution line.In contrast to previous studies,the signal of Oligo-pSc119.2 was observed at the distal end of 6DL in Lin 456.The wheat chromosome 6D was associatedwith increased grain weight and decreased spikelet number using the genotypic data combined with the phenotypes of the F2 population in the three environments.The thousand-grain weight and grain width in the substitution individuals were significantly higher than those in the non-substitution individuals in the F2 population across the three environments.We propose that the hexaploid triticale 6D(6A)substitution line Lin 456 can be a valuable and promising donor stock for genetic improvement during triticale breeding.展开更多
Root hairs are fast growing,ephemeral tubular extensions of the root epidermis that aid nutrient and water uptake.The aim of the present study was to identify QTL for root hair length(RHL)using 227 F8 recombinant inbr...Root hairs are fast growing,ephemeral tubular extensions of the root epidermis that aid nutrient and water uptake.The aim of the present study was to identify QTL for root hair length(RHL)using 227 F8 recombinant inbred lines(RILs)derived from a cross of Zhou 8425 B(Z8425 B)and Chinese Spring(CS),and to develop convenient molecular markers for markerassisted breeding in wheat.Analysis of variance of root hair length showed significant differences(P<0.01)among RILs.The genetic map for QTL analysis consisted of 3389 unique SNP markers.Using composite interval mapping,four major QTL(LOD>2.5)for RHL were identified on chromosomes 1 B(2),2 D and 6 D and four putative QTL(2≤LOD≤2.5)were detected on chromosomes 1 A,3 A,6 B,and 7 B,explaining 3.32%–6.52%of the phenotypic variance.The positive alleles for increased RHL of QTL on chromosomes 2 D,6 B and 6 D(QRhl.cau-2 D,q Rhl.cau-6 B,and QRhl.cau-6 D)were contributed by Z8425 B,and CS contributed positive QTL alleles on chromosomes 1 A(q Rhl.cau-1 A),1 B(QRhl.cau-1 B.1 and QRhl.cau-1 B.2),3 A(q Rhl.cau-3 A)and 7 B(q Rhl.cau-7 B).STARP markers were developed for QRhl.cau-1 B.1,QRhl.cau-2 D,QRhl.cau-6 D,and q Rhl.cau-7 B.Haplotype and association analysis indicated that the positive allele of QRhl.cau-6 D had been strongly selected in Chinese wheat breeding programs.Collectively,the identified QTL for root hair length are likely to be useful for marker-assisted selection.展开更多
Wheat is a staple foodfor more than 35%of the world's population,with wheatflourused to make hundreds of baked goods.Superior end-use quality is a major breeding target;however,improving it is especially time-cons...Wheat is a staple foodfor more than 35%of the world's population,with wheatflourused to make hundreds of baked goods.Superior end-use quality is a major breeding target;however,improving it is especially time-consuming and expensive.Furthermore,genes encoding seed-storage proteins(ssPs)form multigene families and are repetitive,with gaps commonplace in several genome assemblies.To overcome these barriers and efficiently identify superior wheat SSP alleles,we developed"PanSK"(Pan-SSP k-mer)for genotype-to-phenotype prediction based on an SsP-based pangenome resource.PanSK uses 29-mer sequences that represent each ssP gene at the pangenomic level to reveal untapped diversity across landraces and modern cultivars.Genome-wide association studies with k-mers identified 23 Ssp genes associated with end-use quality that represent novel targets for improvement.We evaluated the effect of rye secalin genes on end-use quality and found that removal of w-secalins from 1BL/1RS wheat translocation lines is associated with enhanced end-use quality.Finally,using machine-learning-based prediction inspired by PanSK,we predicted the quality phenotypes with high accuracy from genotypes alone.This study provides an effective approach for genome design based on ssP genes,enabling the breeding of wheat varieties with superior processing capabilities and improved end-use quality.展开更多
Spelt(Triticum aestivum ssp.spelta)is an important wheat subspecies mainly cultivated in Europe before the 20th century that has contributed to modern wheat breeding as a valuable genetic resource.However,relatively l...Spelt(Triticum aestivum ssp.spelta)is an important wheat subspecies mainly cultivated in Europe before the 20th century that has contributed to modern wheat breeding as a valuable genetic resource.However,relatively little is known about the origins and maintenance of spelt populations.Here,using resequencing data from 416 worldwide wheat accessions,including representative spelt wheat,we demonstrate that Eu-ropean spelt emerged when primitive hexaploid wheat spread to the west and hybridized with pre-settled domesticated emmer,the putative maternal donor.Genomic introgression regions from domesticated emmer confer spelt’s primitive morphological characters used for species taxonomy,such as tenacious glumes and laterflowering.We propose a haplotype-based"spelt index"to identify spelt-type wheat vari-eties and to quantify utilization of the spelt gene pool in modern wheat cultivars.This study reveals the ge-netic basis for the establishment of the spelt wheat subspecies in a specific ecological niche and the vital role of the spelt gene pool as a unique germplasm resource in modern wheat breeding.展开更多
Gene regulation is central to all aspects of organism growth,and understanding it using large-scale functional datasets can provide a whole view of biological processes controlling complex phenotypic traits in crops.H...Gene regulation is central to all aspects of organism growth,and understanding it using large-scale functional datasets can provide a whole view of biological processes controlling complex phenotypic traits in crops.However,the connection between massive functional datasets and trait-associated gene discovery for crop improvement is still lacking.In this study,we constructed a wheat integrative gene regulatory network(wGRN)by combining an updated genome annotation and diverse complementary functional datasets,including gene expression,sequence motif,transcription factor(TF)binding,chromatin accessibility,and evolutionarily conserved regulation.wGRN contains 7.2 million genome-wide interactions covering 5947 TFs and 127439 target genes,which were further verified using known regulatory relationships,condition-specific expression,gene functional information,and experiments.We used wGRN to assign genome-wide genes to 3891 specific biological pathways and accurately prioritize candidate genes associated with complex phenotypic traits in genome-wide association studies.In addition,wGRN was used to enhance the interpretation of a spike temporal transcriptome dataset to construct high-resolution networks.We further unveiled novel regulators that enhance the power of spike phenotypic trait prediction using machine learning and contribute to the spike phenotypic differences among modern wheat accessions.Finally,we developed an interactive webserver,wGRN(http://wheat.cau.edu.cn/wGRN),for the community to explore gene regulation and discover trait-associated genes.Collectively,this community resource establishes the foundation for using large-scale functional datasets to guide trait-associated gene discovery for crop improvement.展开更多
Awns are important morphological markers for wheat and exert a strong physiological effect on wheat yield.The awn elongation suppressor B1 has recently been cloned through association and linkage analysis in wheat.How...Awns are important morphological markers for wheat and exert a strong physiological effect on wheat yield.The awn elongation suppressor B1 has recently been cloned through association and linkage analysis in wheat.However,the mechanism of awn inhibition centered around B1 remains to be clarified.Here,we identified an allelic variant in the coding region of B1 through analysis of re-sequencing data;this variant causes an amino acid substitution and premature termination,resulting in a long-awn phenotype.Transcriptome analysis indicated that B1 inhibited awn elongation by impeding cytokinin-and auxinpromoted cell division.Moreover,B1 directly repressed the expression of TaRAE2 and TaLks2,whose orthologs have been reported to promote awn development in rice or barley.More importantly,we found that TaTCP4 and TaTCP10 synergistically inhibited the expression of B1,and a G-to-A mutation in the B1 promoter attenuated its inhibition by TaTCP4/10.Taken together,our results reveal novel mechanisms of awn development and provide genetic resources for trait improvement in wheat.展开更多
Bread wheat(Triticum aestivum L.)is one of the most commonly consumed staples worldwide,with widespread uses in foods such as breads,noodles,cakes,and cookies(Veraverbeke and Delcour,2002).The specific cooking propert...Bread wheat(Triticum aestivum L.)is one of the most commonly consumed staples worldwide,with widespread uses in foods such as breads,noodles,cakes,and cookies(Veraverbeke and Delcour,2002).The specific cooking properties of wheat products are mainly conferred by the gluten proteins contained in wheat grains(Delcour et al.,2012).High molecular weight glutenin subunits(HMW-GSs)are important constituents of wheat gluten proteins,largely determining gluten elasticity and processing quality(Branlard and Dardevet,1985;Payne et al.,1988).展开更多
Interploidy hybridization between hexaploid and tetraploid genotypes occurred repeatedly during genomic introgression events throughout wheat evolution,and is commonly employed in wheat breeding programs.Hexaploid whe...Interploidy hybridization between hexaploid and tetraploid genotypes occurred repeatedly during genomic introgression events throughout wheat evolution,and is commonly employed in wheat breeding programs.Hexaploid wheat usually serves as maternal parent because the reciprocal cross generates progeny with severe defects and poor seed germination,but the underlying mechanism is poorly understood.Here,we performed detailed analysis of phenotypic variation in endosperm between two interploidy reciprocal crosses arising from tetraploid(Triticum durum,AABB)and hexaploid wheat(Triticum aestivum,AABBDD).In the paternal‐versus the maternal‐excess cross,the timing of endosperm cellularization was delayed and starch granule accumulation in the endosperm was repressed,causing reduced germination percentage.The expression profiles of genes involved in nutrient metabolism differed strongly between these endosperm types.Furthermore,expression patterns of parental alleles were dramatically disturbed in interploidy versus intraploidy crosses,leading to increased number of imprinted genes.The endosperm‐specific TaLFL2 showed a paternally imprinted expression pattern in interploidy crosses partially due to allele‐specific DNA methylation.Paternal TaLFL2 binds to and represses a nutrient accumulation regulator TaNAC019,leading to reduced storage protein and starch accumulation during endosperm development in paternal‐excess cross,as confirmed by interploidy crosses between tetraploid wild‐type and clustered regularly interspaced palindromic repeats(CRISPR)–CRISPR‐associated protein 9 generated hexaploid mutants.These findings reveal a contribution of genomic imprinting to paternal‐excess interploidy hybridization barriers during wheat evolution history and explains why experienced breeders preferentially exploit maternal‐excess interploidy crosses in wheat breeding programs.展开更多
Common wheat is a staple food for 35%of the global population,therefore increasing wheat yield in an ever-changing environment is essential for food security in the present day(Peng et al.,2011).Root system is respons...Common wheat is a staple food for 35%of the global population,therefore increasing wheat yield in an ever-changing environment is essential for food security in the present day(Peng et al.,2011).Root system is responsible for water and nutrient acquisition,thus crucial for competitive fitness and crop yield in challenging environments(Karlova et al.,2021;Liu et al.,2022).Over the past decades,extensive research has focused on identifying genes accountable for root growth and development in plants(Rogers and Benfey,2015).However,only a limited number of genes have been cloned in wheat(Li et al.,2021).展开更多
Bread wheat(Triticum aestivum)became a globally dominant crop after incorporating the D genome from the donor species Aegilops tauschii,but the evolutionary history that shaped the D genome during this process remains...Bread wheat(Triticum aestivum)became a globally dominant crop after incorporating the D genome from the donor species Aegilops tauschii,but the evolutionary history that shaped the D genome during this process remains to be clarified.Here,we propose a renewed evolutionary model linking Ae.tauschii and the hexaploid wheat D genome by constructing an ancestral haplotype map covering 762 Ae.tauschii and hexaploid wheat accessions.We dissected the evolutionary trajectories of Ae.tauschii lineages and reported a few independent intermediate accessions,demonstrating that low-frequency intersublineage gene flow had enriched the diversity of Ae.tauschii.We discovered that the D genome of hexaploid wheat was inherited from a unified ancestral template,but with a mosaic composition that was highly mixed and derived mainly from three Ae.tauschii L2 sublineages located in the Caspian coastal region.This result suggests that early agricultural activities facilitated innovations in D-genome composition and finalized the success of hexaploidization.We found that the majority(51.4%)of genetic diversity was attributed to novel mutations absent in Ae.tauschii,and we identified large Ae.tauschii introgressions from various lineages,which expanded the diversity of the wheat D genome and introduced beneficial alleles.This work sheds light on the process of wheat hexaploidization and highlights the evolutionary significance of the multi-layered genetic diversity of the bread wheat D genome.展开更多
Polish wheat (Triticum polonicum) is a unique tetraploid wheat species characterized by an elongated outer glume. The genetic control of the long-glume trait by a single semi-dominant locus, P1 (from Polish wheat), wa...Polish wheat (Triticum polonicum) is a unique tetraploid wheat species characterized by an elongated outer glume. The genetic control of the long-glume trait by a single semi-dominant locus, P1 (from Polish wheat), was established more than 100 years ago, but the underlying causal gene and molecular nature remain elusive. Here, we report the isolation of VRT-A2, encoding an SVP-clade MADS-box transcription factor, as the P1 candidate gene. Genetic evidence suggests that in T. polonicum, a naturally occurring sequence rearrangement in the intron-1 region of VRT-A2 leads to ectopic expression of VRT-A2 in floral organs where the long-glume phenotype appears. Interestingly, we found that the intron-1 region is a key ON/OFF molecular switch for VRT-A2 expression, not only because it recruits transcriptional repressors, but also because it confers intron-mediated transcriptional enhancement. Genotypic analyses using wheat accessions indicated that the P1 locus is likely derived from a single natural mutation in tetraploid wheat, which was subsequently inherited by hexaploid T. petropavlovskyi. Taken together, our findings highlight the promoter-proximal intron variation as a molecular basis for phenotypic differentiation, and thus species formation in Triticum plants.展开更多
Bread wheat(Triticum aestivum L.,AABBDD,2 n=6 x=42),which accounts for most of the cultivated wheat crop worldwide,is a typical allohexaploid with a genome derived from three diploid wild ancestors.Bread wheat arose a...Bread wheat(Triticum aestivum L.,AABBDD,2 n=6 x=42),which accounts for most of the cultivated wheat crop worldwide,is a typical allohexaploid with a genome derived from three diploid wild ancestors.Bread wheat arose and evolved via two sequential allopolyploidization events and was further polished through multiple steps of domestication.Today,cultivated allohexaploid bread wheat has numerous advantageous traits,including adaptive plasticity,favorable yield traits,and extended end-use quality,which have enabled its cultivation well beyond the ranges of its tetraploid and diploid progenitors to become a global staple food crop.In the past decade,rapid advances in wheat genomic research have considerably accelerated our understanding of the bases for the shaping of complex agronomic traits in this polyploid crop.Here,we summarize recent advances in characterizing major genetic factors underlying the origin,evolution,and improvement of polyploid wheats.We end with a brief discussion of the future prospects for the design of gene cloning strategies and modern wheat breeding.展开更多
Dear Editor,Introduction of gibberellin(GA)-insensitive Reduced height(Rht)genes,Rht-B1b and Rht-D1b,has resulted in the“Green Revolution”in modern wheat cultivars(Triticum aestivum)that has skyrocketed wheat grain ...Dear Editor,Introduction of gibberellin(GA)-insensitive Reduced height(Rht)genes,Rht-B1b and Rht-D1b,has resulted in the“Green Revolution”in modern wheat cultivars(Triticum aestivum)that has skyrocketed wheat grain yields worldwide since the 1960s(Peng et al.,1999;Velde et al.,2021).However,Rht-B1b/D1b also reduce coleoptiles,which is undesired in dryland regions where deep planting is essential for seedling establishment(Rebetzke et al.,1999,Rebetzke et al.,2001;Ellis et al.,2004).展开更多
Powdery mildew (Pro) caused by the infection of Blumeria graminis f. sp. tritici (Bgt) is a worldwide crop disease resulting in significant loss of wheat yield. To profile the genes and pathways responding to the ...Powdery mildew (Pro) caused by the infection of Blumeria graminis f. sp. tritici (Bgt) is a worldwide crop disease resulting in significant loss of wheat yield. To profile the genes and pathways responding to the Bgt infection, here, using Affymetrix wheat microarrays, we compared the leaf transcriptomes before and after Bgt inoculation in two wheat genotypes, a Pm-susceptible cultivar Jingdong 8 (S) and its near-isogenic line (R) carrying a single Pm resistant gene Pm30. Our analysis showed that the original gene expression status in the S and R genotypes of wheat was almost identical before Bgt inoculation, since only 60 genes exhibited differential expression by P = 0.01 cutoff. However, 12 h after Bgt inoculation, 3014 and 2800 genes in the S and R genotype, respectively, responded to infec- tion. A wide range of pathways were involved, including cell wall fortification, flavonoid biosynthesis and metabolic processes. Further- more, for the first time, we show that sense-antisense pair genes might be participants in wheat-powdery mildew interaction. In addition, the results of qRT-PCR analysis on several candidate genes were consistent with the microarray data in their expression patterns. In summary, this study reveals leaf transcriptome changes before and after powdery mildew infection in wheat near-isogenic lines, suggest- ing that powdery mildew resistance is a highly complex systematic response involving a large amount of gene regulation.展开更多
Wheat production requires at least-2.4%increase per year rate by 2050 globally to meet food demands.However,heat stress results in serious yield loss of wheat worldwide.Correspondingly,wheat has evolved genetic basis ...Wheat production requires at least-2.4%increase per year rate by 2050 globally to meet food demands.However,heat stress results in serious yield loss of wheat worldwide.Correspondingly,wheat has evolved genetic basis and molecular mechanisms to protect themselves from heat-induced damage.Thus,it is very urgent to understand the underlying genetic basis and molecular mechanisms responsive to elevated temperatures to provide important strategies for heat-tolerant varieties breeding.In this review,we focused on the impact of heat stress on morphology variation at adult stage in wheat breeding programs.We also summarize the recent studies of genetic and molecular factors regulating heat tolerance,including identification of heat stress tolerance related QTLs/genes,and the regulation pathway in response to heat stress.In addition,we discuss the potential ways to improve heat tolerance by developing new technologies such as genome editing.This review of wheat responses to heat stress may shed light on the understanding heat-responsive mechanisms,although the regu-latory network of heat tolerance is still ambiguous in wheat.展开更多
基金supported by the State Key Laboratory of North China Crop Improvement and RegulationNational Key Research and Development Program of China (2018YFD0300501)National Natural Science Foundation of China (31872865)。
文摘Fusarium crown rot(FCR) is a soilborne disease causing severe yield losses in many wheat-growing areas of the world. Diseased plants show browning and necrosis of roots and stems causing white heads at maturity. Little is known about the molecular processes employed by wheat roots to respond to the disease. We characterized morphological, transcriptional and hormonal changes in wheat seedling roots following challenge with Fusarium pseudograminearum(Fp), the main pathogen of FCR. The pathogen inhibited root development to various extents depending on plants' resistance level. Many genes responsive to FCR infection in wheat roots were enriched in plant hormone pathways. The contents of compounds involved in biosynthesis and metabolism of jasmonic acid, salicylic acid, cytokinin and auxin were drastically changed in roots at five days post-inoculation. Presoaking seeds in methyl jasmonate for 24 h promoted FCR resistance, whereas presoaking with cytokinin 6-benzylaminopurine made plants more susceptible. Overexpression of TaOPR3, a gene involved in jasmonic acid biosynthesis, enhanced plant resistance as well as root and shoot growth during infection.
基金supported in part by the National Key Research and Development Program of China (2016YFD0101802, 2016YFD0100600)the National Natural Science Foundation of China (31561143013)
文摘As a cool season crop, wheat(Triticum aestivum L.) has an optimal daytime growing temperature of 15 ℃ during the reproductive stage. With global climate change, heat stress is becoming an increasingly severe constraint on wheat production. In this review, we summarize recent progress in understanding the molecular mechanisms of heat tolerance in wheat. We firstly describe the impact of heat tolerance on morphology and physiology and its potential effect on agronomic traits. We then review recent discoveries in determining the genetic and molecular factors affecting heat tolerance, including the effects of phytohormone signaling and epigenetic regulation. Finally, we discuss integrative strategies to improve heat tolerance by utilization of existing germplasm including modern cultivars, landraces and related species.
基金supported by the National Key Research and Development Program of China (2017YFD0101004)the National Natural Science Foundation of China (91435204)the Science and Technology Independent Innovation Ability Upgrading Project of Shanxi Academy of Agricultural Sciences (2017ZZCX-23)
文摘Hexaploid triticale(×Triticosecale,AABBRR)is an important forage crop and a promising energy plant.Transferring D-genome chromosomes or segments from common wheat(Triticum aestivum)into hexaploid triticale is attractive in improving its economically important traits.Here,a hexaploid triticale 6D(6A)substitution line Lin 456 derived from the cross between the octoploid triticale line H400 and the hexaploid wheat Lin 56 was identified and analyzed by genomic in situ hybridization(GISH),fluorescence in situ hybridization(FISH),and molecular markers.The GISH analysis showed that Lin 456 is a hexaploid triticalewith 14 rye(Secale cereale)chromosomes and 28 wheat chromosomes,whereas non-denaturing fluorescence in situ hybridization(ND-FISH)and molecular marker analysis revealed that it is a 6D(6A)substitution line.In contrast to previous studies,the signal of Oligo-pSc119.2 was observed at the distal end of 6DL in Lin 456.The wheat chromosome 6D was associatedwith increased grain weight and decreased spikelet number using the genotypic data combined with the phenotypes of the F2 population in the three environments.The thousand-grain weight and grain width in the substitution individuals were significantly higher than those in the non-substitution individuals in the F2 population across the three environments.We propose that the hexaploid triticale 6D(6A)substitution line Lin 456 can be a valuable and promising donor stock for genetic improvement during triticale breeding.
基金supported by the National Key Research and Development Program of China(2017YFD0101004)the National Natural Science Foundation of China(31991214)。
文摘Root hairs are fast growing,ephemeral tubular extensions of the root epidermis that aid nutrient and water uptake.The aim of the present study was to identify QTL for root hair length(RHL)using 227 F8 recombinant inbred lines(RILs)derived from a cross of Zhou 8425 B(Z8425 B)and Chinese Spring(CS),and to develop convenient molecular markers for markerassisted breeding in wheat.Analysis of variance of root hair length showed significant differences(P<0.01)among RILs.The genetic map for QTL analysis consisted of 3389 unique SNP markers.Using composite interval mapping,four major QTL(LOD>2.5)for RHL were identified on chromosomes 1 B(2),2 D and 6 D and four putative QTL(2≤LOD≤2.5)were detected on chromosomes 1 A,3 A,6 B,and 7 B,explaining 3.32%–6.52%of the phenotypic variance.The positive alleles for increased RHL of QTL on chromosomes 2 D,6 B and 6 D(QRhl.cau-2 D,q Rhl.cau-6 B,and QRhl.cau-6 D)were contributed by Z8425 B,and CS contributed positive QTL alleles on chromosomes 1 A(q Rhl.cau-1 A),1 B(QRhl.cau-1 B.1 and QRhl.cau-1 B.2),3 A(q Rhl.cau-3 A)and 7 B(q Rhl.cau-7 B).STARP markers were developed for QRhl.cau-1 B.1,QRhl.cau-2 D,QRhl.cau-6 D,and q Rhl.cau-7 B.Haplotype and association analysis indicated that the positive allele of QRhl.cau-6 D had been strongly selected in Chinese wheat breeding programs.Collectively,the identified QTL for root hair length are likely to be useful for marker-assisted selection.
基金STI 2030-Major Projects(2023ZD04069)the National Natural Science Foundation of China(grant no.32125030)+1 种基金the Pinduoduo-China Agricultural University Research Fund(PC2023A01003)the Major Program of the National Agricultural Science and Technology of China(NK20220601).
文摘Wheat is a staple foodfor more than 35%of the world's population,with wheatflourused to make hundreds of baked goods.Superior end-use quality is a major breeding target;however,improving it is especially time-consuming and expensive.Furthermore,genes encoding seed-storage proteins(ssPs)form multigene families and are repetitive,with gaps commonplace in several genome assemblies.To overcome these barriers and efficiently identify superior wheat SSP alleles,we developed"PanSK"(Pan-SSP k-mer)for genotype-to-phenotype prediction based on an SsP-based pangenome resource.PanSK uses 29-mer sequences that represent each ssP gene at the pangenomic level to reveal untapped diversity across landraces and modern cultivars.Genome-wide association studies with k-mers identified 23 Ssp genes associated with end-use quality that represent novel targets for improvement.We evaluated the effect of rye secalin genes on end-use quality and found that removal of w-secalins from 1BL/1RS wheat translocation lines is associated with enhanced end-use quality.Finally,using machine-learning-based prediction inspired by PanSK,we predicted the quality phenotypes with high accuracy from genotypes alone.This study provides an effective approach for genome design based on ssP genes,enabling the breeding of wheat varieties with superior processing capabilities and improved end-use quality.
基金supported by the National Natural Science Foundation of China (31991210)the National Key Research and Development Program of China (2021YFD1200104)+2 种基金the Strategic International Science and Technology Innovation Collaboration Project (2020YFE0202300)the 2115 Talent Development Program of China Agricultural University,the Pinduoduo-China Agricultural University Research Fund (PC2023 B01016)the China National Postdoctoral Program for Innovative Talents (BX20230414).
文摘Spelt(Triticum aestivum ssp.spelta)is an important wheat subspecies mainly cultivated in Europe before the 20th century that has contributed to modern wheat breeding as a valuable genetic resource.However,relatively little is known about the origins and maintenance of spelt populations.Here,using resequencing data from 416 worldwide wheat accessions,including representative spelt wheat,we demonstrate that Eu-ropean spelt emerged when primitive hexaploid wheat spread to the west and hybridized with pre-settled domesticated emmer,the putative maternal donor.Genomic introgression regions from domesticated emmer confer spelt’s primitive morphological characters used for species taxonomy,such as tenacious glumes and laterflowering.We propose a haplotype-based"spelt index"to identify spelt-type wheat vari-eties and to quantify utilization of the spelt gene pool in modern wheat cultivars.This study reveals the ge-netic basis for the establishment of the spelt wheat subspecies in a specific ecological niche and the vital role of the spelt gene pool as a unique germplasm resource in modern wheat breeding.
基金supported by the National Key Research and Development Program of China(2021YFD1200104)the National Natural Science Foundation of China(31991210)+2 种基金the Strategic International Science and Technology Innovation Collaboration Project(2020YFE0202300)the 2115 Talent Development Program of China Agricultural Universitysupported by High-performance Computing Platform of China Agricultural University.
文摘Gene regulation is central to all aspects of organism growth,and understanding it using large-scale functional datasets can provide a whole view of biological processes controlling complex phenotypic traits in crops.However,the connection between massive functional datasets and trait-associated gene discovery for crop improvement is still lacking.In this study,we constructed a wheat integrative gene regulatory network(wGRN)by combining an updated genome annotation and diverse complementary functional datasets,including gene expression,sequence motif,transcription factor(TF)binding,chromatin accessibility,and evolutionarily conserved regulation.wGRN contains 7.2 million genome-wide interactions covering 5947 TFs and 127439 target genes,which were further verified using known regulatory relationships,condition-specific expression,gene functional information,and experiments.We used wGRN to assign genome-wide genes to 3891 specific biological pathways and accurately prioritize candidate genes associated with complex phenotypic traits in genome-wide association studies.In addition,wGRN was used to enhance the interpretation of a spike temporal transcriptome dataset to construct high-resolution networks.We further unveiled novel regulators that enhance the power of spike phenotypic trait prediction using machine learning and contribute to the spike phenotypic differences among modern wheat accessions.Finally,we developed an interactive webserver,wGRN(http://wheat.cau.edu.cn/wGRN),for the community to explore gene regulation and discover trait-associated genes.Collectively,this community resource establishes the foundation for using large-scale functional datasets to guide trait-associated gene discovery for crop improvement.
基金supported by the National Key Research and Development Program of China(2022YFF1003401)the National Natural Science Foundation of China(31991210)the National Natural Science Foundation of China(32172069).
文摘Awns are important morphological markers for wheat and exert a strong physiological effect on wheat yield.The awn elongation suppressor B1 has recently been cloned through association and linkage analysis in wheat.However,the mechanism of awn inhibition centered around B1 remains to be clarified.Here,we identified an allelic variant in the coding region of B1 through analysis of re-sequencing data;this variant causes an amino acid substitution and premature termination,resulting in a long-awn phenotype.Transcriptome analysis indicated that B1 inhibited awn elongation by impeding cytokinin-and auxinpromoted cell division.Moreover,B1 directly repressed the expression of TaRAE2 and TaLks2,whose orthologs have been reported to promote awn development in rice or barley.More importantly,we found that TaTCP4 and TaTCP10 synergistically inhibited the expression of B1,and a G-to-A mutation in the B1 promoter attenuated its inhibition by TaTCP4/10.Taken together,our results reveal novel mechanisms of awn development and provide genetic resources for trait improvement in wheat.
基金supported by the National Natural Science Foundation of China(32125030)Hainan Yazhou Bay Seed Lab(B21HJ0502)China Postdoctoral Science Foundation(2022M713413).
文摘Bread wheat(Triticum aestivum L.)is one of the most commonly consumed staples worldwide,with widespread uses in foods such as breads,noodles,cakes,and cookies(Veraverbeke and Delcour,2002).The specific cooking properties of wheat products are mainly conferred by the gluten proteins contained in wheat grains(Delcour et al.,2012).High molecular weight glutenin subunits(HMW-GSs)are important constituents of wheat gluten proteins,largely determining gluten elasticity and processing quality(Branlard and Dardevet,1985;Payne et al.,1988).
基金This work was supported by the National Natural Science of China(31471479)the Chinese Universities Scientific Fund(2017TC035).
文摘Interploidy hybridization between hexaploid and tetraploid genotypes occurred repeatedly during genomic introgression events throughout wheat evolution,and is commonly employed in wheat breeding programs.Hexaploid wheat usually serves as maternal parent because the reciprocal cross generates progeny with severe defects and poor seed germination,but the underlying mechanism is poorly understood.Here,we performed detailed analysis of phenotypic variation in endosperm between two interploidy reciprocal crosses arising from tetraploid(Triticum durum,AABB)and hexaploid wheat(Triticum aestivum,AABBDD).In the paternal‐versus the maternal‐excess cross,the timing of endosperm cellularization was delayed and starch granule accumulation in the endosperm was repressed,causing reduced germination percentage.The expression profiles of genes involved in nutrient metabolism differed strongly between these endosperm types.Furthermore,expression patterns of parental alleles were dramatically disturbed in interploidy versus intraploidy crosses,leading to increased number of imprinted genes.The endosperm‐specific TaLFL2 showed a paternally imprinted expression pattern in interploidy crosses partially due to allele‐specific DNA methylation.Paternal TaLFL2 binds to and represses a nutrient accumulation regulator TaNAC019,leading to reduced storage protein and starch accumulation during endosperm development in paternal‐excess cross,as confirmed by interploidy crosses between tetraploid wild‐type and clustered regularly interspaced palindromic repeats(CRISPR)–CRISPR‐associated protein 9 generated hexaploid mutants.These findings reveal a contribution of genomic imprinting to paternal‐excess interploidy hybridization barriers during wheat evolution history and explains why experienced breeders preferentially exploit maternal‐excess interploidy crosses in wheat breeding programs.
基金supported by funds of the National Natural Science Foundation of China(U22A6009,32201824).
文摘Common wheat is a staple food for 35%of the global population,therefore increasing wheat yield in an ever-changing environment is essential for food security in the present day(Peng et al.,2011).Root system is responsible for water and nutrient acquisition,thus crucial for competitive fitness and crop yield in challenging environments(Karlova et al.,2021;Liu et al.,2022).Over the past decades,extensive research has focused on identifying genes accountable for root growth and development in plants(Rogers and Benfey,2015).However,only a limited number of genes have been cloned in wheat(Li et al.,2021).
基金supported by the National Natural Science Foundation of China(32322059,32401798)the China National Postdoctoral Program for Innovative Talents(BX20230414)+1 种基金the Chinese Universities Scientific Fund(no.2024TC162)supported by the Highperformance Computing Platform of China Agricultural University.
文摘Bread wheat(Triticum aestivum)became a globally dominant crop after incorporating the D genome from the donor species Aegilops tauschii,but the evolutionary history that shaped the D genome during this process remains to be clarified.Here,we propose a renewed evolutionary model linking Ae.tauschii and the hexaploid wheat D genome by constructing an ancestral haplotype map covering 762 Ae.tauschii and hexaploid wheat accessions.We dissected the evolutionary trajectories of Ae.tauschii lineages and reported a few independent intermediate accessions,demonstrating that low-frequency intersublineage gene flow had enriched the diversity of Ae.tauschii.We discovered that the D genome of hexaploid wheat was inherited from a unified ancestral template,but with a mosaic composition that was highly mixed and derived mainly from three Ae.tauschii L2 sublineages located in the Caspian coastal region.This result suggests that early agricultural activities facilitated innovations in D-genome composition and finalized the success of hexaploidization.We found that the majority(51.4%)of genetic diversity was attributed to novel mutations absent in Ae.tauschii,and we identified large Ae.tauschii introgressions from various lineages,which expanded the diversity of the wheat D genome and introduced beneficial alleles.This work sheds light on the process of wheat hexaploidization and highlights the evolutionary significance of the multi-layered genetic diversity of the bread wheat D genome.
基金This work was supported by grants from the National Natural Science Foundation of China(32072055,31991210,and 91935304).
文摘Polish wheat (Triticum polonicum) is a unique tetraploid wheat species characterized by an elongated outer glume. The genetic control of the long-glume trait by a single semi-dominant locus, P1 (from Polish wheat), was established more than 100 years ago, but the underlying causal gene and molecular nature remain elusive. Here, we report the isolation of VRT-A2, encoding an SVP-clade MADS-box transcription factor, as the P1 candidate gene. Genetic evidence suggests that in T. polonicum, a naturally occurring sequence rearrangement in the intron-1 region of VRT-A2 leads to ectopic expression of VRT-A2 in floral organs where the long-glume phenotype appears. Interestingly, we found that the intron-1 region is a key ON/OFF molecular switch for VRT-A2 expression, not only because it recruits transcriptional repressors, but also because it confers intron-mediated transcriptional enhancement. Genotypic analyses using wheat accessions indicated that the P1 locus is likely derived from a single natural mutation in tetraploid wheat, which was subsequently inherited by hexaploid T. petropavlovskyi. Taken together, our findings highlight the promoter-proximal intron variation as a molecular basis for phenotypic differentiation, and thus species formation in Triticum plants.
基金supported by the National Natural Science Foundation of China(31991214,91935304,32072055,and 91935302)。
文摘Bread wheat(Triticum aestivum L.,AABBDD,2 n=6 x=42),which accounts for most of the cultivated wheat crop worldwide,is a typical allohexaploid with a genome derived from three diploid wild ancestors.Bread wheat arose and evolved via two sequential allopolyploidization events and was further polished through multiple steps of domestication.Today,cultivated allohexaploid bread wheat has numerous advantageous traits,including adaptive plasticity,favorable yield traits,and extended end-use quality,which have enabled its cultivation well beyond the ranges of its tetraploid and diploid progenitors to become a global staple food crop.In the past decade,rapid advances in wheat genomic research have considerably accelerated our understanding of the bases for the shaping of complex agronomic traits in this polyploid crop.Here,we summarize recent advances in characterizing major genetic factors underlying the origin,evolution,and improvement of polyploid wheats.We end with a brief discussion of the future prospects for the design of gene cloning strategies and modern wheat breeding.
基金This work was supported by the grants from the National Natural Science Foundation of China(grants 91935302 and 31991210)Hainan Yazhou Bay Seed Laboratory(B21HJ0111).
文摘Dear Editor,Introduction of gibberellin(GA)-insensitive Reduced height(Rht)genes,Rht-B1b and Rht-D1b,has resulted in the“Green Revolution”in modern wheat cultivars(Triticum aestivum)that has skyrocketed wheat grain yields worldwide since the 1960s(Peng et al.,1999;Velde et al.,2021).However,Rht-B1b/D1b also reduce coleoptiles,which is undesired in dryland regions where deep planting is essential for seedling establishment(Rebetzke et al.,1999,Rebetzke et al.,2001;Ellis et al.,2004).
基金supported by the State High-Tech Program(Grant No. 2006AA10A104) of the Ministry of Science &Technology of Chinathe National Natural Science Foundation of China (Grant No. 30871528)China Transgenic Research Program (Grant Nos. 2008ZX08002-001and 2008ZX08009-002)
文摘Powdery mildew (Pro) caused by the infection of Blumeria graminis f. sp. tritici (Bgt) is a worldwide crop disease resulting in significant loss of wheat yield. To profile the genes and pathways responding to the Bgt infection, here, using Affymetrix wheat microarrays, we compared the leaf transcriptomes before and after Bgt inoculation in two wheat genotypes, a Pm-susceptible cultivar Jingdong 8 (S) and its near-isogenic line (R) carrying a single Pm resistant gene Pm30. Our analysis showed that the original gene expression status in the S and R genotypes of wheat was almost identical before Bgt inoculation, since only 60 genes exhibited differential expression by P = 0.01 cutoff. However, 12 h after Bgt inoculation, 3014 and 2800 genes in the S and R genotype, respectively, responded to infec- tion. A wide range of pathways were involved, including cell wall fortification, flavonoid biosynthesis and metabolic processes. Further- more, for the first time, we show that sense-antisense pair genes might be participants in wheat-powdery mildew interaction. In addition, the results of qRT-PCR analysis on several candidate genes were consistent with the microarray data in their expression patterns. In summary, this study reveals leaf transcriptome changes before and after powdery mildew infection in wheat near-isogenic lines, suggest- ing that powdery mildew resistance is a highly complex systematic response involving a large amount of gene regulation.
基金Major Program of the National Natural Science Foundation of China(3213000343)。
文摘Wheat production requires at least-2.4%increase per year rate by 2050 globally to meet food demands.However,heat stress results in serious yield loss of wheat worldwide.Correspondingly,wheat has evolved genetic basis and molecular mechanisms to protect themselves from heat-induced damage.Thus,it is very urgent to understand the underlying genetic basis and molecular mechanisms responsive to elevated temperatures to provide important strategies for heat-tolerant varieties breeding.In this review,we focused on the impact of heat stress on morphology variation at adult stage in wheat breeding programs.We also summarize the recent studies of genetic and molecular factors regulating heat tolerance,including identification of heat stress tolerance related QTLs/genes,and the regulation pathway in response to heat stress.In addition,we discuss the potential ways to improve heat tolerance by developing new technologies such as genome editing.This review of wheat responses to heat stress may shed light on the understanding heat-responsive mechanisms,although the regu-latory network of heat tolerance is still ambiguous in wheat.