The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is ...The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is supported by the foundation of the units,and the magnitude of vibration and the operating frequency fluctuate in different engineering contexts,leading to variations in the dynamic response of the foundation.The high-frequency units yield significantly diverse outcomes under different startup conditions and times,resulting in failure to meet operational requirements,influencing the normal function of the tunnel,and causing harm to the foundation structure,personnel,and property in severe cases.This article formulates a finite element numerical computation model for solid elements using three-dimensional elastic body theory and integrates field measurements to substantiate and ascertain the crucial parameter configurations of the finite element model.By proposing a comprehensive startup timing function for high-frequency dynamic machines under different startup conditions,simulating the frequency andmagnitude variations during the startup process,and suggesting functions for changes in frequency and magnitude,a simulated startup schedule function for high-frequency machines is created through coupling.Taking into account the selection of the transient dynamic analysis step length,the dynamic response results for the lower dynamic foundation during its fundamental frequency crossing process are obtained.The validation checks if the structural magnitude surpasses the safety threshold during the critical phase of unit startup traversing the structural resonance region.The design recommendations for high-frequency units’dynamic foundations are provided,taking into account the startup process of the machine and ensuring the safe operation of the tunnel.展开更多
With the rapid growth of vehicle population and vehicle miles traveled, automobile emission has become a severe issue in the metropolitan cities of China. There are policies that concentrate on the management of emiss...With the rapid growth of vehicle population and vehicle miles traveled, automobile emission has become a severe issue in the metropolitan cities of China. There are policies that concentrate on the management of emission sources. However, improving the operation of the transportation system through apps on mobile devices, especially navigation apps, may have a unique role in promoting urban air quality. Real-time traveler information can not only help travelers avoid traffic congestion, hut also advise them to adjust their departure time, mode, or route, or even to cancel trips. Will such changes in personal travel patterns have a significant impact in decreasing emissions? If so, to what extent will they impact urban air quality? The aim of this study is to determine how urban traffic emission is affected by the use of navigation apps. With this work, we attempt to answer the question of whether the real-time traffic information provided by navigation apps can help to improve urban air quality. Some of these findings may provide references for the formulation of urban traffic and environmental policies.展开更多
Dear editor,This letter presents a user study to explore the effectiveness of gesture interaction in driver assistance system(DAS).Distracted driving is a specific form of driver inattention and distraction occurs whe...Dear editor,This letter presents a user study to explore the effectiveness of gesture interaction in driver assistance system(DAS).Distracted driving is a specific form of driver inattention and distraction occurs when the drivers'attention is diverted from the driving to other activities.展开更多
基金Smart Integration Key Technologies and Application Demonstrations of Large Scale Underground Space Disaster Prevention and Reduction in Guangzhou International Financial City([2021]–KJ058).
文摘The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is supported by the foundation of the units,and the magnitude of vibration and the operating frequency fluctuate in different engineering contexts,leading to variations in the dynamic response of the foundation.The high-frequency units yield significantly diverse outcomes under different startup conditions and times,resulting in failure to meet operational requirements,influencing the normal function of the tunnel,and causing harm to the foundation structure,personnel,and property in severe cases.This article formulates a finite element numerical computation model for solid elements using three-dimensional elastic body theory and integrates field measurements to substantiate and ascertain the crucial parameter configurations of the finite element model.By proposing a comprehensive startup timing function for high-frequency dynamic machines under different startup conditions,simulating the frequency andmagnitude variations during the startup process,and suggesting functions for changes in frequency and magnitude,a simulated startup schedule function for high-frequency machines is created through coupling.Taking into account the selection of the transient dynamic analysis step length,the dynamic response results for the lower dynamic foundation during its fundamental frequency crossing process are obtained.The validation checks if the structural magnitude surpasses the safety threshold during the critical phase of unit startup traversing the structural resonance region.The design recommendations for high-frequency units’dynamic foundations are provided,taking into account the startup process of the machine and ensuring the safe operation of the tunnel.
文摘With the rapid growth of vehicle population and vehicle miles traveled, automobile emission has become a severe issue in the metropolitan cities of China. There are policies that concentrate on the management of emission sources. However, improving the operation of the transportation system through apps on mobile devices, especially navigation apps, may have a unique role in promoting urban air quality. Real-time traveler information can not only help travelers avoid traffic congestion, hut also advise them to adjust their departure time, mode, or route, or even to cancel trips. Will such changes in personal travel patterns have a significant impact in decreasing emissions? If so, to what extent will they impact urban air quality? The aim of this study is to determine how urban traffic emission is affected by the use of navigation apps. With this work, we attempt to answer the question of whether the real-time traffic information provided by navigation apps can help to improve urban air quality. Some of these findings may provide references for the formulation of urban traffic and environmental policies.
基金supported by the Key-Area Research and Development Program of Guangdong Province(2019B010149001)the National Natural Science Foundation of China(61960206007,62002018,62007001)the 111 Project(B18005)。
文摘Dear editor,This letter presents a user study to explore the effectiveness of gesture interaction in driver assistance system(DAS).Distracted driving is a specific form of driver inattention and distraction occurs when the drivers'attention is diverted from the driving to other activities.