Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ ...Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.展开更多
The formation of lithium dendrites and the safety hazards arising from flammable liquid electrolytes have seriously hindered the development of high-energy-density lithium metal batteries.Herein,an emerging amide-base...The formation of lithium dendrites and the safety hazards arising from flammable liquid electrolytes have seriously hindered the development of high-energy-density lithium metal batteries.Herein,an emerging amide-based electrolyte is proposed,containing LiTFSI and butyrolactam in different molar ratios.1,1,2,2-Tetrafluoroethyl-2,2,3,3-tetrafluoropropylether and fluoroethylene carbonate are introduced into the amide-based electrolyte as counter solvent and additives.The well-designed amide-based electrolyte possesses nonflammability,high ionic conductivity,high thermal stability and electrochemical stability(>4.7 V).Besides,an inorganic/organic-rich solid electrolyte interphase with an abundance of LiF,Li3N and Li-N-C is in situ formed,leading to spherical lithium deposition.The formation mechanism and solvation chemistry of amide-based electrolyte are further inves-tigated by molecular dynamics simulations and density functional theory.When applied in Li metal batteries with LiFePO4 and LiMn2O4 cathode,the amide-based electrolyte can enable stable cycling performance at room temperature and 60℃.This study provides a new insight into the development of amide-based electrolytes for lithium metal batteries.展开更多
Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis wi...Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis with deep learning,linking control and optimization with prediction,and integrating decision-making with control.This method,which consists of setpoint control,self-optimized tuning,and tracking control,ensures that the energy consumption per tonne is as low as possible,while remaining within the target range.An intelligent control system for low-carbon operation is developed by adopting the end-edge-cloud collaboration technology of the Industrial Internet.The system is successfully applied to a fused magnesium furnace and achieves remarkable results in reducing carbon emissions.展开更多
The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au fi...The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au finished metallization, respectively. After 1000 thermal cycles between -40℃ and 125℃, a very thin intermetallic compound (IMC) layer containing Au, Sn, Ni, and Cu formed at the interface between SAC solder joints and underneath metallization with 0.1 μm Au finish, and (Au, Ni, Cu)Sn4 and a very thin AuSn-Ni-Cu IMC layer formed between SAC solder joints and underneath metallization with 0.9 μm Au finish. For SnPb solder joints with 0.1 μm Au finish, a thin (Ni, Cu, Au)3Sn4 IMC layer and a Pb-rich layer formed below and above the (Au, Ni)Sn4 IMC, respectively. Cu diffused through Ni layer and was involved into the IMC formation process. Similar interfacial microstructure was also found for SnPb solder joints with 0.9μm Au finish. The results of shear test show that the shear strength of SAC solder joints is consistently higher than that of SnPb eutectic solder joints during thermal cycling.展开更多
Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process...Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed.展开更多
Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency ...Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency lags much behind to their single junction counterparts due to the deficient interconnection layer(ICL) and defective subcells. To improve TSCs performance, we developed three kinds of ICL structures based on 1.34 and 0.96 e V PbS QDs subcells. The control, 1,2-ethanedithiol capped PbS QDs(PbS-EDT)/Au/tin dioxide(SnO_(2))/zinc oxide(Zn O), utilized SnO_(2) layer to obtain high surface compactness.However, its energy level mismatch causes incomplete recombination. Bypassing it, the second ICL(PbS-EDT/Au/Zn O) removed SnO_(2) and boosted the power conversion efficiency(PCE) from 5.75% to 8.69%. In the third ICL(PbS-EDT/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)/Au/Zn O), a thin layer of PTAA can effectively fill fissures on the surface of PbS-EDT and also protect the front cells from solvent penetration. This TSC obtained a PCE of 9.49% with an open circuit voltage of 0.91 V, a short circuit current density of 15.47 m A/cm~2, and a fill factor of 67.7%. To the best of our knowledge, this was the highest PCE achieved by all PbS QD TSCs reported to date. These TSCs maintained stable performance for a long working time under ambient conditions.展开更多
Al/Ni reactive multilayer foil(RMF)possesses excellent comprehensive properties as a promising substitute for traditional Cu bridge.A theoretical resistivity model of Al/Ni RMF was developed to guide the optimization ...Al/Ni reactive multilayer foil(RMF)possesses excellent comprehensive properties as a promising substitute for traditional Cu bridge.A theoretical resistivity model of Al/Ni RMF was developed to guide the optimization of EFIs.Al/Ni RMF with different bilayer thicknesses and bridge dimensions were prepared by MEMS technology and electrical explosion tests were carried out.According to physical and chemical reactions in bridge,the electrical explosion process was divided into 5 stages:heating of condensed bridge,vaporization and diffusion of Al layers,intermetallic combination reaction,intrinsic explosion,ionization of metal gases,which are obviously shown in measured voltage curve.Effects of interface and grain boundary scattering on the resistivity of film metal were considered.Focusing on variations of substance and state,the resistivity was developed as a function of temperature at each stage.Electrical explosion curves were calculated by this model at different bilayer thicknesses,bridge dimensions and capacitor voltages,which showed an excellent agreement with experimental ones.展开更多
Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were u...Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were used to optimize two hyperparameters in support vector regression(SVR).Based on these methods,three hybrid models to predict peak particle velocity(PPV)for bench blasting were developed.Eighty-eight samples were collected to establish the PPV database,eight initial blasting parameters were chosen as input parameters for the predictionmodel,and the PPV was the output parameter.As predictive performance evaluation indicators,the coefficient of determination(R2),rootmean square error(RMSE),mean absolute error(MAE),and a10-index were selected.The normalizedmutual information value is then used to evaluate the impact of various input parameters on the PPV prediction outcomes.According to the research findings,TSO,WOA,and CS can all enhance the predictive performance of the SVR model.The TSO-SVR model provides the most accurate predictions.The performances of the optimized hybrid SVR models are superior to the unoptimized traditional prediction model.The maximum charge per delay impacts the PPV prediction value the most.展开更多
Recently,deep learning has yielded transformative success across optics and photonics,especially in optical metrology.Deep neural networks (DNNs) with a fully convolutional architecture (e.g.,U-Net and its derivatives...Recently,deep learning has yielded transformative success across optics and photonics,especially in optical metrology.Deep neural networks (DNNs) with a fully convolutional architecture (e.g.,U-Net and its derivatives) have been widely implemented in an end-to-end manner to accomplish various optical metrology tasks,such as fringe denoising,phase unwrapping,and fringe analysis.However,the task of training a DNN to accurately identify an image-to-image transform from massive input and output data pairs seems at best naive,as the physical laws governing the image formation or other domain expertise pertaining to the measurement have not yet been fully exploited in current deep learning practice.To this end,we introduce a physics-informed deep learning method for fringe pattern analysis (PI-FPA) to overcome this limit by integrating a lightweight DNN with a learning-enhanced Fourier transform profilometry (Le FTP) module.By parameterizing conventional phase retrieval methods,the Le FTP module embeds the prior knowledge in the network structure and the loss function to directly provide reliable phase results for new types of samples,while circumventing the requirement of collecting a large amount of high-quality data in supervised learning methods.Guided by the initial phase from Le FTP,the phase recovery ability of the lightweight DNN is enhanced to further improve the phase accuracy at a low computational cost compared with existing end-to-end networks.Experimental results demonstrate that PI-FPA enables more accurate and computationally efficient single-shot phase retrieval,exhibiting its excellent generalization to various unseen objects during training.The proposed PI-FPA presents that challenging issues in optical metrology can be potentially overcome through the synergy of physics-priors-based traditional tools and data-driven learning approaches,opening new avenues to achieve fast and accurate single-shot 3D imaging.展开更多
The South China Sea(SCS)is the largest marginal sea in the Northwest Pacific Ocean,and it encounters frequent typhoons.The atmosphere and ocean will create significant thermal and dynamic responses during the intense ...The South China Sea(SCS)is the largest marginal sea in the Northwest Pacific Ocean,and it encounters frequent typhoons.The atmosphere and ocean will create significant thermal and dynamic responses during the intense disturbance caused by typhoons.However,these responses have not been thoroughly investigated owing to the complicated marine environment.According to the satellite data,the SCS Basin was observed to have a strong sea surface temperature(SST)response to Typhoon Mangkhut,resulting in widespread SST cooling.A coupled model was used to investigate the atmospheric and oceanic responses to Typhoon Mangkhut.Best-track data,satellite SST,and ARGO measurements show that the coupled WRF-CROCO simulation displays better track,intensity,SST,temperature,and salinity profiles than those of the WRF-only simulation.Results show that the typhoon induced rightward intensifications in wind speed,ocean current,and SST.The following are some remarkable atmosphere and ocean responses:(1)the SST below the inner-core region is cooled by 1℃,resulting in a 37%-44%decrease in wet enthalpy,and the central pressure is increased by~9 hPa.Therefore,the changes in SST below the innercore region of the SCS Basin have a significant impact on air-sea fluxes under high-wind conditions;(2)the ocean boundary layer analysis shows that near-inertial oscillations on the right side of the typhoon track and a strong inertial current up to~2.28 m/s in the upper ocean were observed,which resonated with the local wind and flow field on the right side and induced strong SST cooling;(3)a decrease in SST decreased the moist static energy of the typhoon boundary layer,thereby weakening the typhoon’s intensity.The difference in equivalent potential temperature and sea surface pressure have a good correlation,indicating that the influence of moist static energy on typhoon intensity cannot be overlooked.展开更多
Background:Cerebrovascular disease(CVD)ranks among the foremost factors responsible for mortality on a global scale.The mortality patterns of CVDs and temporal trends in China need to be well-illustrated and updated.M...Background:Cerebrovascular disease(CVD)ranks among the foremost factors responsible for mortality on a global scale.The mortality patterns of CVDs and temporal trends in China need to be well-illustrated and updated.Methods:We collected mortality data on patients with CVD from Chinese Center for Disease Control and Prevention’s Disease Surveillance Points(CDC-DSP)system.The mortality of CVD in 2020 was described by age,sex,residence,and region.The temporal trend from 2013 to 2019 was evaluated using joinpoint regression,and estimated rates of decline were extrapolated until 2030 using time series models.Results:In 2019,the age-standardized mortality in China(ASMRC)per 100,000 individuals was 113.2.The ASMRC for males(137.7/10^(5))and rural areas(123.0/10^(5))were both higher when stratified by gender and urban/rural residence.The central region had the highest mortality(126.5/10^(5)),the western region had a slightly lower mortality(123.5/10^(5)),and the eastern region had the lowest mortality(97.3/10^(5)).The age-specific mortality showed an accelerated upward trend from aged 55-59 years,with maximum mortality observed in individuals over 85 years of age.The age-standardized mortality of CVD decreased by 2.43%(95%confidence interval,1.02-3.81%)annually from 2013 to 2019.Notably,the age-specific mortality of CVD increased from 2013 to 2019 for the age group of over 85 years.In 2020,both the absolute number of CVD cases and the crude mortality of CVD have increased compared to their values in 2019.The estimated total deaths due to CVD were estimated to reach 2.3 million in 2025 and 2.4 million in 2030.Conclusion:The heightened focus on the burden of CVD among males,rural areas,the central and western of China,and individuals aged 75 years and above has emerged as a pivotal determinant in further decreasing mortalities,consequently presenting novel challenges to strategies for disease prevention and control.展开更多
Climate change significantly impacts human health,exacerbating existing health inequalities and creating new ones.This study addresses the lack of systematic review in this area by analyzing 2440 publications,focusing...Climate change significantly impacts human health,exacerbating existing health inequalities and creating new ones.This study addresses the lack of systematic review in this area by analyzing 2440 publications,focusing on four key terms:health,disparities,environmental factors,and climate change.Strict inclusion criteria limited the selection to English-language,peer-reviewed articles related to climate health hazards,ensuring the relevance and rigor of the synthesized studies.This process synthesized 65 relevant studies.Our investigation revealed that recent research,predominantly from developed countries,has broadened its scope beyond temperature-related impacts to encompass diverse climate hazards,including droughts,extreme weather,floods,mental health issues,and the intersecting effects of Coronavirus Disease 2019.Research has highlighted exposure as the most studied element in the causal chain of climate change-related health inequalities,followed by adaptive capability and inherent sensitivity.The most significant vulnerabilities were observed among populations with low socioeconomic status,ethnic minorities,and women.The study further reveals research biases and methodological limitations,such as the paucity of attention to underdeveloped regions,a narrow focus on non-temperature-related hazards,challenges in attributing climate change effects,and a deficit of large-scale empirical studies.The findings call for more innovative research approaches and a holistic integration of physical,socio-political,and economic dimensions to enrich climate-health discourse and inform equitable policy-making.展开更多
The shear failure modes and respective failure mechanism of Sn3.5Ag and Sn3.0Ag0.5Cu lead-free solder bumping on Au/Ni/Cu metallization formed by induction spontaneous heating reflow process have been investigated thr...The shear failure modes and respective failure mechanism of Sn3.5Ag and Sn3.0Ag0.5Cu lead-free solder bumping on Au/Ni/Cu metallization formed by induction spontaneous heating reflow process have been investigated through the shear test after aging at 120℃ for 0, 1, 4, 9 and 16 d. Different typical shear failure behaviors have been found in the loading curves (shear force vs displacement). From the results of interracial morphology analysis of the fracture surfaces and cross-sections, two main typical failure modes have been identified. The probabilities of the failure modes occurrence are inconsistent when the joints were aged for different times. The evolution of the brittle NiaSn4 and Cu-Ni-Au-Sn layers and the grains coarsening of the solder bulk are the basic reasons for the change of shear failure modes.展开更多
The mechanism of ultrasonic wire wedge bonding, one of the die/chip interconnection methods, was investigated based on the characteristics of the ultrasonic wire bonding joints. The Al-1%Si wire of 25 μm in diameter ...The mechanism of ultrasonic wire wedge bonding, one of the die/chip interconnection methods, was investigated based on the characteristics of the ultrasonic wire bonding joints. The Al-1%Si wire of 25 μm in diameter was bonded on Au/Ni/Cu pad and the joint cross-section was analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The results indicated that it is irregular for the ultrasonic bond formation, non-welded at the centre but joining well at the periphery, especially at the heel and toe of the joint. Furthermore, the diffusion and/or reaction at the cross-section interface are not clear at C-zone, while there exists a strip layer microstructure at P-zone, and the composition is 78.96 at. pct Al and 14.88 at. pct Ni, close to the Al3Ni intermetallic compound. All these observations are tentatively ascribed to the plastic flow enhanced by ultrasonic vibration and repeated cold deformation driving interdiffusion between AI and Ni at bond interface.展开更多
We experimentally investigate effects of W^(6+)occupying the sites of Sc^(3+)in the unit cell of Sc_(2) W_(3) O_(12)(Sc_(8) W_(12) O_(48))on the structure, vibration and thermal expansion. The composition and structur...We experimentally investigate effects of W^(6+)occupying the sites of Sc^(3+)in the unit cell of Sc_(2) W_(3) O_(12)(Sc_(8) W_(12) O_(48))on the structure, vibration and thermal expansion. The composition and structure of the doped sample(Sc_(6) W_(2))W_(12) O_(48±δ)(with two W^(6+)occupying two sites of Sc^(3+)in the unit cell of Sc_(8) W_(12) O_(48)) are analyzed and identified by combining the x-ray photoelectron spectroscopy and the synchronous x-ray diffraction with first-principles calculations based on density functional theory. Results show that the crystal with even W^(6+)occupying even Sc^(3+)in the unit cell is stable and maintains the orthorhombic structure at room temperature. The structure of the doped sample is similar to that of Sc_(2) W_(3) O_(12), and with even W occupying even positions of Sc in the unit cell and constituting the WO_(6) octahedra. Raman analyses show that the doped sample possesses stronger W–O bonds and wider Raman linewidths than those of Sc_(2) W_(3) O_(12). The sample doped with W also exhibits intrinsic negative thermal expansion in the measured range of 150 K–650 K.展开更多
Purpose:To examine selected putative virulent prop-erties of mutans streptococci in two groups with dif-ferent caries activity and to examine co-culture hy-bridization of the strains in vitro. Methods: A set of strain...Purpose:To examine selected putative virulent prop-erties of mutans streptococci in two groups with dif-ferent caries activity and to examine co-culture hy-bridization of the strains in vitro. Methods: A set of strains from caries-free subjects (115) and another set from caries-active subjects (165) were isolated. Each strain was characterized for three virulence determi-nants. The clinical bacteria were then cocultured by three strains exhibiting the highest levels of virulence. Isolate colonies of last filial generation bacteria were enrichment-incubated and estimated for virulence again. RAPD-PCR and MLEE analyses were processed for parental bacteria and last filial genera-tion one. Results: No difference associated with caries activity of the subjects from whom the isolates origi-nated. Virulent properties of a filial generation strains was not different in the same generation, but was very different from their parent strains. Conclu-sion: The coexist properties of virulent polyclonal strain of MS may hold in a very general conditional sense in a dental plaque ecosystem in vivo, however, one of the co-culture strains may became dominant and displa- ced the others as the result of continuous ecological succession in vitro.展开更多
This paper presents a novel topology to control the baseband impedance of a power amplifier(PA)to avoid performance deterioration in concurrent dual-band mode.This topology can avoid pure resonance of capacitors and i...This paper presents a novel topology to control the baseband impedance of a power amplifier(PA)to avoid performance deterioration in concurrent dual-band mode.This topology can avoid pure resonance of capacitors and inductors LC,which leads to a high impedance at some frequency points.Consequently,it can be applied to transmitters that are excited by broadband signals.In particular,by adjusting the circuit parameters and increasing stages,the impedance of the key frequency bands can be flexibly controlled.A PA is designed to support this design idea.Its saturated output power is around 46.7 dBm,and the drain efficiency is>68.2%(1.8-2.3 GHz).Under concurrent two-tone excitation,the drain efficiency reaches around 40%even under 5.5 dB back-off power with the tone spacing from 10 MHz to 500 MHz.These results demonstrate that the proposed topology is capable of controlling wideband baseband impedance.展开更多
Cities are increasingly vital in global carbon mitigation efforts,yet few have specifically tailored carbon neutrality pathways.Furthermore,out-of-boundary indirect greenhouse gas(GHG)emissions,aside from those relate...Cities are increasingly vital in global carbon mitigation efforts,yet few have specifically tailored carbon neutrality pathways.Furthermore,out-of-boundary indirect greenhouse gas(GHG)emissions,aside from those related to electricity and heat imports,are often overlooked in existing pathways,despite their significance in comprehensive carbon mitigation strategies.Addressing this gap,here we introduce an integrated analysis framework focusing on both production and consumption-related GHG emissions.Applied to Wuyishan,a service-oriented city in Southern China,this framework provides a holistic view of a city's carbon neutrality pathway,from a full-scope GHG emission perspective.The findings reveal the equal importance of carbon reduction within and outside the city's boundaries,with out-of-boundary emissions accounting for 42%of Wuyishan's present total GHG emissions.This insight highlights the necessity of including these external factors in GHG accounting and mitigation strategy development.This framework serves as a practical tool for cities,particularly in developing countries,to craft effective carbon neutrality roadmaps that encompass the full spectrum of GHG emissions.展开更多
With the rapid development of sequencing technologies,followed by the reduction of sequencing cost,numerous ornamental plants have been sequenced,resulting in their genomic studies shifting from gene cloning and marke...With the rapid development of sequencing technologies,followed by the reduction of sequencing cost,numerous ornamental plants have been sequenced,resulting in their genomic studies shifting from gene cloning and marker development to whole genome profiling.A profound understanding of genome structure and function at the whole genome level can not only help to modify ornamental traits,such as fragrance,color and flower shape,through genetic engineering,but also infer the genetic relationship and evolutionary history of ornamental plants via comparative genomics analysis.In this paper,we review the current situation of sequencing strategies and the application of genomics to study the origin and evolution of ornamental plants.We highlight challenges of ornamental plant genomic research.The use of cutting-edge technologies,such as genomics,gene editing and molecular design polymerization breeding,can facilitate our understanding of genetic regulation mechanisms and the germplasm innovation of important traits in ornamental plants.The results can be expected to significantly increase the breeding efficiency of ornamental plants.展开更多
基金the financial support provided by the National Natural Science Foundation of China(Grant No.11872013).
文摘Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.
基金supported by the National Natural Science Foundation of China(21905069,52002094)the Shenzhen Science and Technology Innovation Committee(JCYJ20180507183907224,KQTD20170809110344233)+2 种基金the Economic,Trade and Information Commission of Shenzhen Municipality through the Graphene Manufacture Innovation Center(201901161514)the Guangdong Province Covid-19 Pandemic Control Research Fund(2020KZDZX1220)the School Research Startup Expenses of Harbin Institute of Technology(Shenzhen)(DD29100027).
文摘The formation of lithium dendrites and the safety hazards arising from flammable liquid electrolytes have seriously hindered the development of high-energy-density lithium metal batteries.Herein,an emerging amide-based electrolyte is proposed,containing LiTFSI and butyrolactam in different molar ratios.1,1,2,2-Tetrafluoroethyl-2,2,3,3-tetrafluoropropylether and fluoroethylene carbonate are introduced into the amide-based electrolyte as counter solvent and additives.The well-designed amide-based electrolyte possesses nonflammability,high ionic conductivity,high thermal stability and electrochemical stability(>4.7 V).Besides,an inorganic/organic-rich solid electrolyte interphase with an abundance of LiF,Li3N and Li-N-C is in situ formed,leading to spherical lithium deposition.The formation mechanism and solvation chemistry of amide-based electrolyte are further inves-tigated by molecular dynamics simulations and density functional theory.When applied in Li metal batteries with LiFePO4 and LiMn2O4 cathode,the amide-based electrolyte can enable stable cycling performance at room temperature and 60℃.This study provides a new insight into the development of amide-based electrolytes for lithium metal batteries.
基金supported by the Science and Technology Major Project 2020 of Liaoning Province,China(2020JH1/10100008)National Natural Science Foundation of China(61991404 and 61991400)111 Project 2.0(B08015)。
文摘Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis with deep learning,linking control and optimization with prediction,and integrating decision-making with control.This method,which consists of setpoint control,self-optimized tuning,and tracking control,ensures that the energy consumption per tonne is as low as possible,while remaining within the target range.An intelligent control system for low-carbon operation is developed by adopting the end-edge-cloud collaboration technology of the Industrial Internet.The system is successfully applied to a fused magnesium furnace and achieves remarkable results in reducing carbon emissions.
文摘The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au finished metallization, respectively. After 1000 thermal cycles between -40℃ and 125℃, a very thin intermetallic compound (IMC) layer containing Au, Sn, Ni, and Cu formed at the interface between SAC solder joints and underneath metallization with 0.1 μm Au finish, and (Au, Ni, Cu)Sn4 and a very thin AuSn-Ni-Cu IMC layer formed between SAC solder joints and underneath metallization with 0.9 μm Au finish. For SnPb solder joints with 0.1 μm Au finish, a thin (Ni, Cu, Au)3Sn4 IMC layer and a Pb-rich layer formed below and above the (Au, Ni)Sn4 IMC, respectively. Cu diffused through Ni layer and was involved into the IMC formation process. Similar interfacial microstructure was also found for SnPb solder joints with 0.9μm Au finish. The results of shear test show that the shear strength of SAC solder joints is consistently higher than that of SnPb eutectic solder joints during thermal cycling.
基金supported by the National Key Research and Development Program of China[grant No.2018YFB2001800]National Natural Science Foundation of China[grant No.51871184]Dalian High-level Talents Innovation Support Program[grant No.2021RD06]。
文摘Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed.
基金National Natural Science Foundation of China (Grant No. 62374065)Interdisciplinary Research promotion of HUST (No. 2023JCYJ040)+2 种基金Innovation Project of Optics Valley Laboratory (No. OVL2021BG008)Program of Science Technology of Wenzhou City (No. G20210011)financial support from the Innovation and Technology Commission (Grant no. MHP/104/21)。
文摘Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency lags much behind to their single junction counterparts due to the deficient interconnection layer(ICL) and defective subcells. To improve TSCs performance, we developed three kinds of ICL structures based on 1.34 and 0.96 e V PbS QDs subcells. The control, 1,2-ethanedithiol capped PbS QDs(PbS-EDT)/Au/tin dioxide(SnO_(2))/zinc oxide(Zn O), utilized SnO_(2) layer to obtain high surface compactness.However, its energy level mismatch causes incomplete recombination. Bypassing it, the second ICL(PbS-EDT/Au/Zn O) removed SnO_(2) and boosted the power conversion efficiency(PCE) from 5.75% to 8.69%. In the third ICL(PbS-EDT/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)/Au/Zn O), a thin layer of PTAA can effectively fill fissures on the surface of PbS-EDT and also protect the front cells from solvent penetration. This TSC obtained a PCE of 9.49% with an open circuit voltage of 0.91 V, a short circuit current density of 15.47 m A/cm~2, and a fill factor of 67.7%. To the best of our knowledge, this was the highest PCE achieved by all PbS QD TSCs reported to date. These TSCs maintained stable performance for a long working time under ambient conditions.
基金National Natural Science Foundation of China(Grant No.11872013)for supporting this project.
文摘Al/Ni reactive multilayer foil(RMF)possesses excellent comprehensive properties as a promising substitute for traditional Cu bridge.A theoretical resistivity model of Al/Ni RMF was developed to guide the optimization of EFIs.Al/Ni RMF with different bilayer thicknesses and bridge dimensions were prepared by MEMS technology and electrical explosion tests were carried out.According to physical and chemical reactions in bridge,the electrical explosion process was divided into 5 stages:heating of condensed bridge,vaporization and diffusion of Al layers,intermetallic combination reaction,intrinsic explosion,ionization of metal gases,which are obviously shown in measured voltage curve.Effects of interface and grain boundary scattering on the resistivity of film metal were considered.Focusing on variations of substance and state,the resistivity was developed as a function of temperature at each stage.Electrical explosion curves were calculated by this model at different bilayer thicknesses,bridge dimensions and capacitor voltages,which showed an excellent agreement with experimental ones.
基金financially supported by the NationalNatural Science Foundation of China(Grant No.42072309)the Fundamental Research Funds for National University,China University of Geosciences(Wuhan)(Grant No.CUGDCJJ202217)+1 种基金the Knowledge Innovation Program of Wuhan-Basic Research(Grant No.2022020801010199)the Hubei Key Laboratory of Blasting Engineering Foundation(HKLBEF202002).
文摘Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were used to optimize two hyperparameters in support vector regression(SVR).Based on these methods,three hybrid models to predict peak particle velocity(PPV)for bench blasting were developed.Eighty-eight samples were collected to establish the PPV database,eight initial blasting parameters were chosen as input parameters for the predictionmodel,and the PPV was the output parameter.As predictive performance evaluation indicators,the coefficient of determination(R2),rootmean square error(RMSE),mean absolute error(MAE),and a10-index were selected.The normalizedmutual information value is then used to evaluate the impact of various input parameters on the PPV prediction outcomes.According to the research findings,TSO,WOA,and CS can all enhance the predictive performance of the SVR model.The TSO-SVR model provides the most accurate predictions.The performances of the optimized hybrid SVR models are superior to the unoptimized traditional prediction model.The maximum charge per delay impacts the PPV prediction value the most.
基金funded by National Key Research and Development Program of China (2022YFB2804603,2022YFB2804604)National Natural Science Foundation of China (62075096,62205147,U21B2033)+7 种基金China Postdoctoral Science Foundation (2023T160318,2022M711630,2022M721619)Jiangsu Funding Program for Excellent Postdoctoral Talent (2022ZB254)The Leading Technology of Jiangsu Basic Research Plan (BK20192003)The“333 Engineering”Research Project of Jiangsu Province (BRA2016407)The Jiangsu Provincial“One belt and one road”innovation cooperation project (BZ2020007)Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging&Intelligent Sense (JSGP202105)Fundamental Research Funds for the Central Universities (30922010405,30921011208,30920032101,30919011222)National Major Scientific Instrument Development Project (62227818).
文摘Recently,deep learning has yielded transformative success across optics and photonics,especially in optical metrology.Deep neural networks (DNNs) with a fully convolutional architecture (e.g.,U-Net and its derivatives) have been widely implemented in an end-to-end manner to accomplish various optical metrology tasks,such as fringe denoising,phase unwrapping,and fringe analysis.However,the task of training a DNN to accurately identify an image-to-image transform from massive input and output data pairs seems at best naive,as the physical laws governing the image formation or other domain expertise pertaining to the measurement have not yet been fully exploited in current deep learning practice.To this end,we introduce a physics-informed deep learning method for fringe pattern analysis (PI-FPA) to overcome this limit by integrating a lightweight DNN with a learning-enhanced Fourier transform profilometry (Le FTP) module.By parameterizing conventional phase retrieval methods,the Le FTP module embeds the prior knowledge in the network structure and the loss function to directly provide reliable phase results for new types of samples,while circumventing the requirement of collecting a large amount of high-quality data in supervised learning methods.Guided by the initial phase from Le FTP,the phase recovery ability of the lightweight DNN is enhanced to further improve the phase accuracy at a low computational cost compared with existing end-to-end networks.Experimental results demonstrate that PI-FPA enables more accurate and computationally efficient single-shot phase retrieval,exhibiting its excellent generalization to various unseen objects during training.The proposed PI-FPA presents that challenging issues in optical metrology can be potentially overcome through the synergy of physics-priors-based traditional tools and data-driven learning approaches,opening new avenues to achieve fast and accurate single-shot 3D imaging.
基金Supported by the National Natural Science Foundation of China (No. 41620104003)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Nos. SJKY19_0951, KYCX21_0959)
文摘The South China Sea(SCS)is the largest marginal sea in the Northwest Pacific Ocean,and it encounters frequent typhoons.The atmosphere and ocean will create significant thermal and dynamic responses during the intense disturbance caused by typhoons.However,these responses have not been thoroughly investigated owing to the complicated marine environment.According to the satellite data,the SCS Basin was observed to have a strong sea surface temperature(SST)response to Typhoon Mangkhut,resulting in widespread SST cooling.A coupled model was used to investigate the atmospheric and oceanic responses to Typhoon Mangkhut.Best-track data,satellite SST,and ARGO measurements show that the coupled WRF-CROCO simulation displays better track,intensity,SST,temperature,and salinity profiles than those of the WRF-only simulation.Results show that the typhoon induced rightward intensifications in wind speed,ocean current,and SST.The following are some remarkable atmosphere and ocean responses:(1)the SST below the inner-core region is cooled by 1℃,resulting in a 37%-44%decrease in wet enthalpy,and the central pressure is increased by~9 hPa.Therefore,the changes in SST below the innercore region of the SCS Basin have a significant impact on air-sea fluxes under high-wind conditions;(2)the ocean boundary layer analysis shows that near-inertial oscillations on the right side of the typhoon track and a strong inertial current up to~2.28 m/s in the upper ocean were observed,which resonated with the local wind and flow field on the right side and induced strong SST cooling;(3)a decrease in SST decreased the moist static energy of the typhoon boundary layer,thereby weakening the typhoon’s intensity.The difference in equivalent potential temperature and sea surface pressure have a good correlation,indicating that the influence of moist static energy on typhoon intensity cannot be overlooked.
文摘Background:Cerebrovascular disease(CVD)ranks among the foremost factors responsible for mortality on a global scale.The mortality patterns of CVDs and temporal trends in China need to be well-illustrated and updated.Methods:We collected mortality data on patients with CVD from Chinese Center for Disease Control and Prevention’s Disease Surveillance Points(CDC-DSP)system.The mortality of CVD in 2020 was described by age,sex,residence,and region.The temporal trend from 2013 to 2019 was evaluated using joinpoint regression,and estimated rates of decline were extrapolated until 2030 using time series models.Results:In 2019,the age-standardized mortality in China(ASMRC)per 100,000 individuals was 113.2.The ASMRC for males(137.7/10^(5))and rural areas(123.0/10^(5))were both higher when stratified by gender and urban/rural residence.The central region had the highest mortality(126.5/10^(5)),the western region had a slightly lower mortality(123.5/10^(5)),and the eastern region had the lowest mortality(97.3/10^(5)).The age-specific mortality showed an accelerated upward trend from aged 55-59 years,with maximum mortality observed in individuals over 85 years of age.The age-standardized mortality of CVD decreased by 2.43%(95%confidence interval,1.02-3.81%)annually from 2013 to 2019.Notably,the age-specific mortality of CVD increased from 2013 to 2019 for the age group of over 85 years.In 2020,both the absolute number of CVD cases and the crude mortality of CVD have increased compared to their values in 2019.The estimated total deaths due to CVD were estimated to reach 2.3 million in 2025 and 2.4 million in 2030.Conclusion:The heightened focus on the burden of CVD among males,rural areas,the central and western of China,and individuals aged 75 years and above has emerged as a pivotal determinant in further decreasing mortalities,consequently presenting novel challenges to strategies for disease prevention and control.
基金funded by the National Natural Science Foundation of China(Nos.71773062,71525007,72140002,and 72204137)the National Social Science Foundation of China(No.17ZDA077).
文摘Climate change significantly impacts human health,exacerbating existing health inequalities and creating new ones.This study addresses the lack of systematic review in this area by analyzing 2440 publications,focusing on four key terms:health,disparities,environmental factors,and climate change.Strict inclusion criteria limited the selection to English-language,peer-reviewed articles related to climate health hazards,ensuring the relevance and rigor of the synthesized studies.This process synthesized 65 relevant studies.Our investigation revealed that recent research,predominantly from developed countries,has broadened its scope beyond temperature-related impacts to encompass diverse climate hazards,including droughts,extreme weather,floods,mental health issues,and the intersecting effects of Coronavirus Disease 2019.Research has highlighted exposure as the most studied element in the causal chain of climate change-related health inequalities,followed by adaptive capability and inherent sensitivity.The most significant vulnerabilities were observed among populations with low socioeconomic status,ethnic minorities,and women.The study further reveals research biases and methodological limitations,such as the paucity of attention to underdeveloped regions,a narrow focus on non-temperature-related hazards,challenges in attributing climate change effects,and a deficit of large-scale empirical studies.The findings call for more innovative research approaches and a holistic integration of physical,socio-political,and economic dimensions to enrich climate-health discourse and inform equitable policy-making.
文摘The shear failure modes and respective failure mechanism of Sn3.5Ag and Sn3.0Ag0.5Cu lead-free solder bumping on Au/Ni/Cu metallization formed by induction spontaneous heating reflow process have been investigated through the shear test after aging at 120℃ for 0, 1, 4, 9 and 16 d. Different typical shear failure behaviors have been found in the loading curves (shear force vs displacement). From the results of interracial morphology analysis of the fracture surfaces and cross-sections, two main typical failure modes have been identified. The probabilities of the failure modes occurrence are inconsistent when the joints were aged for different times. The evolution of the brittle NiaSn4 and Cu-Ni-Au-Sn layers and the grains coarsening of the solder bulk are the basic reasons for the change of shear failure modes.
文摘The mechanism of ultrasonic wire wedge bonding, one of the die/chip interconnection methods, was investigated based on the characteristics of the ultrasonic wire bonding joints. The Al-1%Si wire of 25 μm in diameter was bonded on Au/Ni/Cu pad and the joint cross-section was analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The results indicated that it is irregular for the ultrasonic bond formation, non-welded at the centre but joining well at the periphery, especially at the heel and toe of the joint. Furthermore, the diffusion and/or reaction at the cross-section interface are not clear at C-zone, while there exists a strip layer microstructure at P-zone, and the composition is 78.96 at. pct Al and 14.88 at. pct Ni, close to the Al3Ni intermetallic compound. All these observations are tentatively ascribed to the plastic flow enhanced by ultrasonic vibration and repeated cold deformation driving interdiffusion between AI and Ni at bond interface.
基金supported by the National Science Foundation of China (Grant Nos. 11574276 and 11874328)the Key Scientific Research Project of Universities in Henan Province (Grant Nos. 20B140018, 20A510012, and 19A140019)+1 种基金Key Scientific and Technological Project of Henan Province (Grant Nos. 202102210110, 182102210451 and 192102210002)The use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy,Office of Science,Office of Basic Energy Sciences (Grant No. DE-AC02-06CH11357)。
文摘We experimentally investigate effects of W^(6+)occupying the sites of Sc^(3+)in the unit cell of Sc_(2) W_(3) O_(12)(Sc_(8) W_(12) O_(48))on the structure, vibration and thermal expansion. The composition and structure of the doped sample(Sc_(6) W_(2))W_(12) O_(48±δ)(with two W^(6+)occupying two sites of Sc^(3+)in the unit cell of Sc_(8) W_(12) O_(48)) are analyzed and identified by combining the x-ray photoelectron spectroscopy and the synchronous x-ray diffraction with first-principles calculations based on density functional theory. Results show that the crystal with even W^(6+)occupying even Sc^(3+)in the unit cell is stable and maintains the orthorhombic structure at room temperature. The structure of the doped sample is similar to that of Sc_(2) W_(3) O_(12), and with even W occupying even positions of Sc in the unit cell and constituting the WO_(6) octahedra. Raman analyses show that the doped sample possesses stronger W–O bonds and wider Raman linewidths than those of Sc_(2) W_(3) O_(12). The sample doped with W also exhibits intrinsic negative thermal expansion in the measured range of 150 K–650 K.
文摘Purpose:To examine selected putative virulent prop-erties of mutans streptococci in two groups with dif-ferent caries activity and to examine co-culture hy-bridization of the strains in vitro. Methods: A set of strains from caries-free subjects (115) and another set from caries-active subjects (165) were isolated. Each strain was characterized for three virulence determi-nants. The clinical bacteria were then cocultured by three strains exhibiting the highest levels of virulence. Isolate colonies of last filial generation bacteria were enrichment-incubated and estimated for virulence again. RAPD-PCR and MLEE analyses were processed for parental bacteria and last filial genera-tion one. Results: No difference associated with caries activity of the subjects from whom the isolates origi-nated. Virulent properties of a filial generation strains was not different in the same generation, but was very different from their parent strains. Conclu-sion: The coexist properties of virulent polyclonal strain of MS may hold in a very general conditional sense in a dental plaque ecosystem in vivo, however, one of the co-culture strains may became dominant and displa- ced the others as the result of continuous ecological succession in vitro.
基金Project supported by the National Natural Science Foundation of China(No.62001061)the Science and Technology Research Program of Chongqing Municipal Education Commission,China(No.KJQN202201525)+1 种基金the Natural Science Foundation of Chongqing,China(No.CSTB2022NSCQ-MSX0453)the Research Foundation of Chongqing University of Science and Technology,China(No.CKRC2020029)。
文摘This paper presents a novel topology to control the baseband impedance of a power amplifier(PA)to avoid performance deterioration in concurrent dual-band mode.This topology can avoid pure resonance of capacitors and inductors LC,which leads to a high impedance at some frequency points.Consequently,it can be applied to transmitters that are excited by broadband signals.In particular,by adjusting the circuit parameters and increasing stages,the impedance of the key frequency bands can be flexibly controlled.A PA is designed to support this design idea.Its saturated output power is around 46.7 dBm,and the drain efficiency is>68.2%(1.8-2.3 GHz).Under concurrent two-tone excitation,the drain efficiency reaches around 40%even under 5.5 dB back-off power with the tone spacing from 10 MHz to 500 MHz.These results demonstrate that the proposed topology is capable of controlling wideband baseband impedance.
基金supported by the National Natural Science Foundation of China:An emission scenario-air quality modelbased study on the evaluation of“Dual Attainments”of Chinese city(Grant No.72074154)Research on the optimization of synergistic regional pathways under carbon emission peak and carbon neutrality goals(Grant No.72140004)Research on pathway optimization and implementation mechanism of synergistic control of GHGs and pollution for key regions(Grant No.72243008).
文摘Cities are increasingly vital in global carbon mitigation efforts,yet few have specifically tailored carbon neutrality pathways.Furthermore,out-of-boundary indirect greenhouse gas(GHG)emissions,aside from those related to electricity and heat imports,are often overlooked in existing pathways,despite their significance in comprehensive carbon mitigation strategies.Addressing this gap,here we introduce an integrated analysis framework focusing on both production and consumption-related GHG emissions.Applied to Wuyishan,a service-oriented city in Southern China,this framework provides a holistic view of a city's carbon neutrality pathway,from a full-scope GHG emission perspective.The findings reveal the equal importance of carbon reduction within and outside the city's boundaries,with out-of-boundary emissions accounting for 42%of Wuyishan's present total GHG emissions.This insight highlights the necessity of including these external factors in GHG accounting and mitigation strategy development.This framework serves as a practical tool for cities,particularly in developing countries,to craft effective carbon neutrality roadmaps that encompass the full spectrum of GHG emissions.
基金supported by the National Natural Science Foundation of China(No.31870689)Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China(No.2020132608)the National Key Research and Development Program of China(2018YFD1000401).
文摘With the rapid development of sequencing technologies,followed by the reduction of sequencing cost,numerous ornamental plants have been sequenced,resulting in their genomic studies shifting from gene cloning and marker development to whole genome profiling.A profound understanding of genome structure and function at the whole genome level can not only help to modify ornamental traits,such as fragrance,color and flower shape,through genetic engineering,but also infer the genetic relationship and evolutionary history of ornamental plants via comparative genomics analysis.In this paper,we review the current situation of sequencing strategies and the application of genomics to study the origin and evolution of ornamental plants.We highlight challenges of ornamental plant genomic research.The use of cutting-edge technologies,such as genomics,gene editing and molecular design polymerization breeding,can facilitate our understanding of genetic regulation mechanisms and the germplasm innovation of important traits in ornamental plants.The results can be expected to significantly increase the breeding efficiency of ornamental plants.