A calculation model of stress field in laser additive manufacturing of walnut shell composite powder(walnut shell/Co-PES powder)was established.The DFLUX subroutine was used to implement the moveable application of a ...A calculation model of stress field in laser additive manufacturing of walnut shell composite powder(walnut shell/Co-PES powder)was established.The DFLUX subroutine was used to implement the moveable application of a double ellipsoid heat source by considering the mechanical properties varying with temperature.The stress field was simulated by the sequential coupling method,and the experimental results were in good accordance with the simulation results.In addition,the distribution and variation of stress and strain field were obtained in the process of laser additive manufacturing of walnut shell composite powder.The displacement of laser additive manufacturing walnut shell composite parts gradually decreased with increasing preheating temperature,decreasing laser power and increasing scanning speed.During the cooling process,the displacement of laser additive manufacturing of walnut shell composite parts gradually increased with the increasing preheating temperature,decreasing scanning speed and increasing laser power.展开更多
High-quality wood products and valuable wood crafts receive everyone’s favor with the rapid development of the economy.In order to improve the cutting surface quality of wood forming parts,the cutting experiment of r...High-quality wood products and valuable wood crafts receive everyone’s favor with the rapid development of the economy.In order to improve the cutting surface quality of wood forming parts,the cutting experiment of renewable Fraxinus mandshurica was conducted by waterjet-assisted CO_(2)laser(WACL)technology.A quadratic mathematical model for describing the relationship between surface roughness changes and cutting parameters was established.The effects of cutting speed,flow pressure and laser power on the kerf surface roughness of Fraxinus mandshurica when cutting transversally were discussed by response surface method.The experimental results showed that kerf surface roughness decreased under a lower laser power,higher cutting speed and higher flow pressure.When the cutting speed was 30 mm/s,flow pressure was 1.58 MPa and laser power was 45 W,the actual surface roughness of the optimized Fraxinus mandshurica was 2.41μm,and it was in accord with the theoretically predicted surface roughness value of 2.54μm,so the model fitted the actual situation well.Through the analysis of 3D profile morphology and micromorphology,it was concluded that the optimized kerf surface of Fraxinus mandshurica was smoother,the cell wall was not destroyed and the tracheid was clear.It provides the theoretical basis for wood micromachining.展开更多
In order to enhance the strength of sustainable walnut shell/Co-PES(WSPC)sintered parts,wax-filtrated posttreatment was carried out.The effects of treating fluid temperature,preheating time and immersion time on the b...In order to enhance the strength of sustainable walnut shell/Co-PES(WSPC)sintered parts,wax-filtrated posttreatment was carried out.The effects of treating fluid temperature,preheating time and immersion time on the bending strength of WSPC wax-filtrated parts were analyzed by single factor analysis method.To obtain an accurate model for predicting the bending strength of the WSPC wax-filtrated part,the experiments were involved by using Box-Behnken design(BBD).Main parameters,such as treating fluid temperature,preheating time and immersion time,and their interactive effects were analyzed through analysis of variance(ANOVA)and graphical contours.The results demonstrated that all parameters’direct effects were significant to bending strength of the WSPC wax-filtrated part.Its optimum value was 5.0 MPa when the treating fluid temperature of 70°C,preheating time of 50 min,and immersion time of 20 s.The predicted models effectively validated had good predicting accuracy.The WSPC wax-filtrated part using optimal processing parameters was processed by investment casting,and then the metal casting of dimensional stability and smooth surface was obtained.Investment casting was done using WSPC wax-filtrated parts under optimal process parameters and then metal parts with stable structure size and smooth surface can be obtained,which indicates that WSPC material can be used for investment casting.展开更多
基金Supported by the Scientific Research Start-Up Fund Project of Northeast Petroleum University(2019KQ67 and 2021KQ09)the Guiding Innovation Fund Project of Northeast Petroleum University(2021YDL-13)+1 种基金National Natural Science Foundation of China(52075090)Supported by the National Key R&D Program of China(2017YFD0601004).
文摘A calculation model of stress field in laser additive manufacturing of walnut shell composite powder(walnut shell/Co-PES powder)was established.The DFLUX subroutine was used to implement the moveable application of a double ellipsoid heat source by considering the mechanical properties varying with temperature.The stress field was simulated by the sequential coupling method,and the experimental results were in good accordance with the simulation results.In addition,the distribution and variation of stress and strain field were obtained in the process of laser additive manufacturing of walnut shell composite powder.The displacement of laser additive manufacturing walnut shell composite parts gradually decreased with increasing preheating temperature,decreasing laser power and increasing scanning speed.During the cooling process,the displacement of laser additive manufacturing of walnut shell composite parts gradually increased with the increasing preheating temperature,decreasing scanning speed and increasing laser power.
基金supported by the Joint Scientific and Technological Innovation Project of Hainan Province(2021CXLH0001)the Teaching Reform in Higher Education of Heilongjiang Province(SJGY20210135)+4 种基金the Key Subject of Education Planning in Heilongjiang Province(GJB1423352)the Guiding Innovation Fund Project of Northeast Petroleum University(2022YDL-06 and 2021YDL-13)Daqing City Guiding Science and Technology Project(zd-2021-41)the Scientific Research Start-Up Fund Project of Northeast Petroleum University(2021KQ09 and 2019KQ67)the National Key R&D Program of China(2017YFD0601004).
文摘High-quality wood products and valuable wood crafts receive everyone’s favor with the rapid development of the economy.In order to improve the cutting surface quality of wood forming parts,the cutting experiment of renewable Fraxinus mandshurica was conducted by waterjet-assisted CO_(2)laser(WACL)technology.A quadratic mathematical model for describing the relationship between surface roughness changes and cutting parameters was established.The effects of cutting speed,flow pressure and laser power on the kerf surface roughness of Fraxinus mandshurica when cutting transversally were discussed by response surface method.The experimental results showed that kerf surface roughness decreased under a lower laser power,higher cutting speed and higher flow pressure.When the cutting speed was 30 mm/s,flow pressure was 1.58 MPa and laser power was 45 W,the actual surface roughness of the optimized Fraxinus mandshurica was 2.41μm,and it was in accord with the theoretically predicted surface roughness value of 2.54μm,so the model fitted the actual situation well.Through the analysis of 3D profile morphology and micromorphology,it was concluded that the optimized kerf surface of Fraxinus mandshurica was smoother,the cell wall was not destroyed and the tracheid was clear.It provides the theoretical basis for wood micromachining.
基金This study was supported by Scientific Research Staring Foundation of Northeast Petroleum University(1305021868)the National Natural Science Foundation of China(51475089)+3 种基金the National Key R&D Program of China(2017YFD0601004)the Natural Science Foundation of Heilongjiang Province(ZD2017009)Fundamental Research Funds for the Central Universities(2572017PZ06)the Special Project of Scientific and Technological Development of Central Guidance for Local(ZY16C03).
文摘In order to enhance the strength of sustainable walnut shell/Co-PES(WSPC)sintered parts,wax-filtrated posttreatment was carried out.The effects of treating fluid temperature,preheating time and immersion time on the bending strength of WSPC wax-filtrated parts were analyzed by single factor analysis method.To obtain an accurate model for predicting the bending strength of the WSPC wax-filtrated part,the experiments were involved by using Box-Behnken design(BBD).Main parameters,such as treating fluid temperature,preheating time and immersion time,and their interactive effects were analyzed through analysis of variance(ANOVA)and graphical contours.The results demonstrated that all parameters’direct effects were significant to bending strength of the WSPC wax-filtrated part.Its optimum value was 5.0 MPa when the treating fluid temperature of 70°C,preheating time of 50 min,and immersion time of 20 s.The predicted models effectively validated had good predicting accuracy.The WSPC wax-filtrated part using optimal processing parameters was processed by investment casting,and then the metal casting of dimensional stability and smooth surface was obtained.Investment casting was done using WSPC wax-filtrated parts under optimal process parameters and then metal parts with stable structure size and smooth surface can be obtained,which indicates that WSPC material can be used for investment casting.