Image steganography is one of the prominent technologies in data hiding standards.Steganographic system performance mostly depends on the embedding strategy.Its goal is to embed strictly confidential information into ...Image steganography is one of the prominent technologies in data hiding standards.Steganographic system performance mostly depends on the embedding strategy.Its goal is to embed strictly confidential information into images without causing perceptible changes in the original image.The randomization strategies in data embedding techniques may utilize random domains,pixels,or region-of-interest for concealing secrets into a cover image,preventing information from being discovered by an attacker.The implementation of an appropriate embedding technique can achieve a fair balance between embedding capability and stego image imperceptibility,but it is challenging.A systematic approach is used with a standard methodology to carry out this study.This review concentrates on the critical examination of several embedding strategies,incorporating experimental results with state-of-the-art methods emphasizing the robustness,security,payload capacity,and visual quality metrics of the stego images.The fundamental ideas of steganography are presented in this work,along with a unique viewpoint that sets it apart from previous works by highlighting research gaps,important problems,and difficulties.Additionally,it offers a discussion of suggested directions for future study to advance and investigate uncharted territory in image steganography.展开更多
In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis...In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis. Various related properties are explored. Finally, some computations of picture fuzzy functions over generalized picture fuzzy variables are illustrated by using our proposed technique.展开更多
Nowadays, picture fuzzy set theory is a flourishing field in mathematics with uncertainty by incorporating the concept of positive, negative and neutral membership degrees of an object. A traditional crisp relation re...Nowadays, picture fuzzy set theory is a flourishing field in mathematics with uncertainty by incorporating the concept of positive, negative and neutral membership degrees of an object. A traditional crisp relation represents the satisfaction or the dissatisfaction of relationship, connection or correspondence between the objects of two or more sets. However, there are some problems that can’t be solved through classical relationships, such as the relationship between two objects being vague. In those situations, picture fuzzy relation over picture fuzzy sets is an important and powerful concept which is suitable for describing correspondences between two vague objects. It represents the strength of association of the elements of picture fuzzy sets. It plays an important role in picture fuzzy modeling, inference and control system and also has important applications in relational databases, approximate reasoning, preference modeling, medical diagnosis, etc. In this article, we define picture fuzzy relations over picture fuzzy sets, including some other fundamental definitions with illustrations. The max-min and min-max compositions of picture fuzzy relations are defined in the light of picture fuzzy sets and discussed some properties related to them. The reflexivity, symmetry and transitivity of a picture fuzzy relation are described over a picture fuzzy set. Finally, various properties are explored related to the picture fuzzy relations over a picture fuzzy set.展开更多
In wireless communications, the Ambient Backscatter Communication (AmBC) technique is a promisingapproach, detecting user presence accurately at low power levels. At low power or a low Signal-to-Noise Ratio(SNR), ther...In wireless communications, the Ambient Backscatter Communication (AmBC) technique is a promisingapproach, detecting user presence accurately at low power levels. At low power or a low Signal-to-Noise Ratio(SNR), there is no dedicated power for the users. Instead, they can transmit information by reflecting the ambientRadio Frequency (RF) signals in the spectrum. Therefore, it is essential to detect user presence in the spectrum forthe transmission of data without loss or without collision at a specific time. In this paper, the authors proposed anovel Spectrum Sensing (SS) detection technique in the Cognitive Radio (CR) spectrum, by developing the AmBC.Novel Matched Filter Detection with Inverse covariance (MFDI), Cyclostationary Feature Detection with Inversecovariance (CFDI) and Hybrid Filter Detection with Inverse covariance (HFDI) approaches are used with AmBCto detect the presence of users at low power levels. The performance of the three detection techniques is measuredusing the parameters of Probability of Detection (PD), Probability of False Alarms (Pfa), Probability of MissedDetection (Pmd), sensing time and throughput at low power or low SNR. The results show that there is a significantimprovement via the HFDI technique for all the parameters.展开更多
Alzheimer’s disease is a severe neuron disease that damages brain cells which leads to permanent loss of memory also called dementia.Many people die due to this disease every year because this is not curable but earl...Alzheimer’s disease is a severe neuron disease that damages brain cells which leads to permanent loss of memory also called dementia.Many people die due to this disease every year because this is not curable but early detection of this disease can help restrain the spread.Alzheimer’s ismost common in elderly people in the age bracket of 65 and above.An automated system is required for early detection of disease that can detect and classify the disease into multiple Alzheimer classes.Deep learning and machine learning techniques are used to solvemanymedical problems like this.The proposed system Alzheimer Disease detection utilizes transfer learning on Multi-class classification using brain Medical resonance imagining(MRI)working to classify the images in four stages,Mild demented(MD),Moderate demented(MOD),Non-demented(ND),Very mild demented(VMD).Simulation results have shown that the proposed systemmodel gives 91.70%accuracy.It also observed that the proposed system gives more accurate results as compared to previous approaches.展开更多
The fifth generation(5G)system is the forthcoming generation of the mobile communication system.It has numerous additional features and offers an extensively high data rate,more capacity,and low latency.However,these ...The fifth generation(5G)system is the forthcoming generation of the mobile communication system.It has numerous additional features and offers an extensively high data rate,more capacity,and low latency.However,these features and applications have many problems and issues in terms of security,which has become a great challenge in the telecommunication industry.This paper aimed to propose a solution to preserve the user identity privacy in the 5G system that can identify permanent identity by using Variable Mobile Subscriber Identity,which randomly changes and does not use the permanent identity between the user equipment and home network.Through this mechanism,the user identity privacy would be secured and hidden.Moreover,it improves the synchronization between mobile users and home networks.Additionally,its compliance with the Authentication and Key Agreement(AKA)structure was adopted in the previous generations.It can be deployed efficiently in the preceding generations because the current architecture imposes minimal modifications on the network parties without changes in the authentication vector’s message size.Moreover,the addition of any hardware to the AKA carries minor adjustments on the network parties.In this paper,the ProVerif is used to verify the proposed scheme.展开更多
Achieving a good recognition rate for degraded document images is difficult as degraded document images suffer from low contrast,bleedthrough,and nonuniform illumination effects.Unlike the existing baseline thresholdi...Achieving a good recognition rate for degraded document images is difficult as degraded document images suffer from low contrast,bleedthrough,and nonuniform illumination effects.Unlike the existing baseline thresholding techniques that use fixed thresholds and windows,the proposed method introduces a concept for obtaining dynamic windows according to the image content to achieve better binarization.To enhance a low-contrast image,we proposed a new mean histogram stretching method for suppressing noisy pixels in the background and,simultaneously,increasing pixel contrast at edges or near edges,which results in an enhanced image.For the enhanced image,we propose a new method for deriving adaptive local thresholds for dynamic windows.The dynamic window is derived by exploiting the advantage of Otsu thresholding.To assess the performance of the proposed method,we have used standard databases,namely,document image binarization contest(DIBCO),for experimentation.The comparative study on well-known existing methods indicates that the proposed method outperforms the existing methods in terms of quality and recognition rate.展开更多
Many organizations apply cloud computing to store and effectively process data for various applications.The user uploads the data in the cloud has less security due to the unreliable verification process of data integ...Many organizations apply cloud computing to store and effectively process data for various applications.The user uploads the data in the cloud has less security due to the unreliable verification process of data integrity.In this research,an enhanced Merkle hash tree method of effective authentication model is proposed in the multi-owner cloud to increase the security of the cloud data.Merkle Hash tree applies the leaf nodes with a hash tag and the non-leaf node contains the table of hash information of child to encrypt the large data.Merkle Hash tree provides the efficient mapping of data and easily identifies the changesmade in the data due to proper structure.The developed model supports privacy-preserving public auditing to provide a secure cloud storage system.The data owners upload the data in the cloud and edit the data using the private key.An enhanced Merkle hash tree method stores the data in the cloud server and splits it into batches.The data files requested by the data owner are audit by a third-party auditor and the multiowner authentication method is applied during the modification process to authenticate the user.The result shows that the proposed method reduces the encryption and decryption time for cloud data storage by 2–167 ms when compared to the existing Advanced Encryption Standard and Blowfish.展开更多
Smart healthcare applications depend on data from wearable sensors(WSs)mounted on a patient’s body for frequent monitoring information.Healthcare systems depend on multi-level data for detecting illnesses and consequ...Smart healthcare applications depend on data from wearable sensors(WSs)mounted on a patient’s body for frequent monitoring information.Healthcare systems depend on multi-level data for detecting illnesses and consequently delivering correct diagnostic measures.The collection of WS data and integration of that data for diagnostic purposes is a difficult task.This paper proposes an Errorless Data Fusion(EDF)approach to increase posture recognition accuracy.The research is based on a case study in a health organization.With the rise in smart healthcare systems,WS data fusion necessitates careful attention to provide sensitive analysis of the recognized illness.As a result,it is dependent on WS inputs and performs group analysis at a similar rate to improve diagnostic efficiency.Sensor breakdowns,the constant time factor,aggregation,and analysis results all cause errors,resulting in rejected or incorrect suggestions.This paper resolves this problem by using EDF,which is related to patient situational discovery through healthcare surveillance systems.Features of WS data are examined extensively using active and iterative learning to identify errors in specific postures.This technology improves position detection accuracy,analysis duration,and error rate,regardless of user movements.Wearable devices play a critical role in the management and treatment of patients.They can ensure that patients are provided with a unique treatment for their medical needs.This paper discusses the EDF technique for optimizing posture identification accuracy through multi-feature analysis.At first,the patients’walking patterns are tracked at various time intervals.The characteristics are then evaluated in relation to the stored data using a random forest classifier.展开更多
Hepatitis C is a contagious blood-borne infection,and it is mostly asymptomatic during the initial stages.Therefore,it is difficult to diagnose and treat patients in the early stages of infection.The disease’s progre...Hepatitis C is a contagious blood-borne infection,and it is mostly asymptomatic during the initial stages.Therefore,it is difficult to diagnose and treat patients in the early stages of infection.The disease’s progression to its last stages makes diagnosis and treatment more difficult.In this study,an AI system based on machine learning algorithms is presented to help healthcare professionals with an early diagnosis of hepatitis C.The dataset used for our Hep-Pred model is based on a literature study,and includes the records of 1385 patients infected with the hepatitis C virus.Patients in this dataset received treatment dosages for the hepatitis C virus for about 18 months.A former study divided the disease into four main stages.These stages have proven helpful for doctors to analyze the liver’s condition.The traditional way to check the staging is the biopsy,which is a painful and time-consuming process.This article aims to provide an effective and efficient approach to predict hepatitis C staging.For this purpose,the proposed technique uses a fine Gaussian SVM learning algorithm,providing 97.9%accurate results.展开更多
Flying ad hoc networks(FANETs)present a challenging environment due to the dynamic and highly mobile nature of the network.Dynamic network topology and uncertain node mobility structure of FANETs do not aim to conside...Flying ad hoc networks(FANETs)present a challenging environment due to the dynamic and highly mobile nature of the network.Dynamic network topology and uncertain node mobility structure of FANETs do not aim to consider only one path transmission.Several different techniques are adopted to address the issues arising in FANETs,from game theory to clustering to channel estimation and other statistical schemes.These approaches mostly employ traditional concepts for problem solutions.One of the novel approaches that provide simpler solutions to more complex problems is to use biologically inspired schemes.Several Nature-inspired schemes address cooperation and alliance which can be used to ensure connectivity among network nodes.One such species that resembles the dynamicity of FANETs are Bats.In this paper,the biologically inspired metaheuristic technique of the BAT Algorithm is proposed to present a routing protocol called iBATCOOP(Improved BAT Algorithm using Cooperation technique).We opt for the design implementation of the natural posture of bats to handle the necessary flying requirements.Moreover,we envision the concept of cooperative diversity using multiple relays and present an iBAT-COOP routing protocol for FANETs.This paper employs cooperation for an optimal route selection and reflects on distance,Signal to Noise Ratio(SNR),and link conditions to an efficient level to deal with FANET’s routing.By way of simulations,the performance of iBAT-COOP protocol outperforms BAT-FANET protocol and reduces packet loss ratio,end-to-end delay,and transmission loss by 81%,21%,and 82%respectively.Furthermore,the average link duration is improved by 25%compared to the BAT-FANET protocol.展开更多
基金This research was funded by the Ministry of Higher Education(MOHE)through Fundamental Research Grant Scheme(FRGS)under the Grand Number FRGS/1/2020/ICT01/UK M/02/4,and University Kebangsaan Malaysia for open access publication.
文摘Image steganography is one of the prominent technologies in data hiding standards.Steganographic system performance mostly depends on the embedding strategy.Its goal is to embed strictly confidential information into images without causing perceptible changes in the original image.The randomization strategies in data embedding techniques may utilize random domains,pixels,or region-of-interest for concealing secrets into a cover image,preventing information from being discovered by an attacker.The implementation of an appropriate embedding technique can achieve a fair balance between embedding capability and stego image imperceptibility,but it is challenging.A systematic approach is used with a standard methodology to carry out this study.This review concentrates on the critical examination of several embedding strategies,incorporating experimental results with state-of-the-art methods emphasizing the robustness,security,payload capacity,and visual quality metrics of the stego images.The fundamental ideas of steganography are presented in this work,along with a unique viewpoint that sets it apart from previous works by highlighting research gaps,important problems,and difficulties.Additionally,it offers a discussion of suggested directions for future study to advance and investigate uncharted territory in image steganography.
文摘In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis. Various related properties are explored. Finally, some computations of picture fuzzy functions over generalized picture fuzzy variables are illustrated by using our proposed technique.
文摘Nowadays, picture fuzzy set theory is a flourishing field in mathematics with uncertainty by incorporating the concept of positive, negative and neutral membership degrees of an object. A traditional crisp relation represents the satisfaction or the dissatisfaction of relationship, connection or correspondence between the objects of two or more sets. However, there are some problems that can’t be solved through classical relationships, such as the relationship between two objects being vague. In those situations, picture fuzzy relation over picture fuzzy sets is an important and powerful concept which is suitable for describing correspondences between two vague objects. It represents the strength of association of the elements of picture fuzzy sets. It plays an important role in picture fuzzy modeling, inference and control system and also has important applications in relational databases, approximate reasoning, preference modeling, medical diagnosis, etc. In this article, we define picture fuzzy relations over picture fuzzy sets, including some other fundamental definitions with illustrations. The max-min and min-max compositions of picture fuzzy relations are defined in the light of picture fuzzy sets and discussed some properties related to them. The reflexivity, symmetry and transitivity of a picture fuzzy relation are described over a picture fuzzy set. Finally, various properties are explored related to the picture fuzzy relations over a picture fuzzy set.
基金the Ministry of Higher Education Malaysia for funding this research project through Fundamental Research Grant Scheme(FRGS)with Project Code:FRGS/1/2022/TK02/UCSI/02/1 and also to UCSI University.
文摘In wireless communications, the Ambient Backscatter Communication (AmBC) technique is a promisingapproach, detecting user presence accurately at low power levels. At low power or a low Signal-to-Noise Ratio(SNR), there is no dedicated power for the users. Instead, they can transmit information by reflecting the ambientRadio Frequency (RF) signals in the spectrum. Therefore, it is essential to detect user presence in the spectrum forthe transmission of data without loss or without collision at a specific time. In this paper, the authors proposed anovel Spectrum Sensing (SS) detection technique in the Cognitive Radio (CR) spectrum, by developing the AmBC.Novel Matched Filter Detection with Inverse covariance (MFDI), Cyclostationary Feature Detection with Inversecovariance (CFDI) and Hybrid Filter Detection with Inverse covariance (HFDI) approaches are used with AmBCto detect the presence of users at low power levels. The performance of the three detection techniques is measuredusing the parameters of Probability of Detection (PD), Probability of False Alarms (Pfa), Probability of MissedDetection (Pmd), sensing time and throughput at low power or low SNR. The results show that there is a significantimprovement via the HFDI technique for all the parameters.
文摘Alzheimer’s disease is a severe neuron disease that damages brain cells which leads to permanent loss of memory also called dementia.Many people die due to this disease every year because this is not curable but early detection of this disease can help restrain the spread.Alzheimer’s ismost common in elderly people in the age bracket of 65 and above.An automated system is required for early detection of disease that can detect and classify the disease into multiple Alzheimer classes.Deep learning and machine learning techniques are used to solvemanymedical problems like this.The proposed system Alzheimer Disease detection utilizes transfer learning on Multi-class classification using brain Medical resonance imagining(MRI)working to classify the images in four stages,Mild demented(MD),Moderate demented(MOD),Non-demented(ND),Very mild demented(VMD).Simulation results have shown that the proposed systemmodel gives 91.70%accuracy.It also observed that the proposed system gives more accurate results as compared to previous approaches.
基金The Universiti Kebangsaan Malaysia(UKM)Research Grant Scheme GGPM-2020-028 funded this research.
文摘The fifth generation(5G)system is the forthcoming generation of the mobile communication system.It has numerous additional features and offers an extensively high data rate,more capacity,and low latency.However,these features and applications have many problems and issues in terms of security,which has become a great challenge in the telecommunication industry.This paper aimed to propose a solution to preserve the user identity privacy in the 5G system that can identify permanent identity by using Variable Mobile Subscriber Identity,which randomly changes and does not use the permanent identity between the user equipment and home network.Through this mechanism,the user identity privacy would be secured and hidden.Moreover,it improves the synchronization between mobile users and home networks.Additionally,its compliance with the Authentication and Key Agreement(AKA)structure was adopted in the previous generations.It can be deployed efficiently in the preceding generations because the current architecture imposes minimal modifications on the network parties without changes in the authentication vector’s message size.Moreover,the addition of any hardware to the AKA carries minor adjustments on the network parties.In this paper,the ProVerif is used to verify the proposed scheme.
基金funded by the Ministry of Higher Education,Malaysia for providing facilities and financial support under the Long Research Grant Scheme LRGS-1-2019-UKM-UKM-2-7.
文摘Achieving a good recognition rate for degraded document images is difficult as degraded document images suffer from low contrast,bleedthrough,and nonuniform illumination effects.Unlike the existing baseline thresholding techniques that use fixed thresholds and windows,the proposed method introduces a concept for obtaining dynamic windows according to the image content to achieve better binarization.To enhance a low-contrast image,we proposed a new mean histogram stretching method for suppressing noisy pixels in the background and,simultaneously,increasing pixel contrast at edges or near edges,which results in an enhanced image.For the enhanced image,we propose a new method for deriving adaptive local thresholds for dynamic windows.The dynamic window is derived by exploiting the advantage of Otsu thresholding.To assess the performance of the proposed method,we have used standard databases,namely,document image binarization contest(DIBCO),for experimentation.The comparative study on well-known existing methods indicates that the proposed method outperforms the existing methods in terms of quality and recognition rate.
基金The Universiti Kebangsaan Malaysia(UKM)Research Grant Scheme FRGS/1/2020/ICT03/UKM/02/6 and GGPM-2020-028 funded this research.
文摘Many organizations apply cloud computing to store and effectively process data for various applications.The user uploads the data in the cloud has less security due to the unreliable verification process of data integrity.In this research,an enhanced Merkle hash tree method of effective authentication model is proposed in the multi-owner cloud to increase the security of the cloud data.Merkle Hash tree applies the leaf nodes with a hash tag and the non-leaf node contains the table of hash information of child to encrypt the large data.Merkle Hash tree provides the efficient mapping of data and easily identifies the changesmade in the data due to proper structure.The developed model supports privacy-preserving public auditing to provide a secure cloud storage system.The data owners upload the data in the cloud and edit the data using the private key.An enhanced Merkle hash tree method stores the data in the cloud server and splits it into batches.The data files requested by the data owner are audit by a third-party auditor and the multiowner authentication method is applied during the modification process to authenticate the user.The result shows that the proposed method reduces the encryption and decryption time for cloud data storage by 2–167 ms when compared to the existing Advanced Encryption Standard and Blowfish.
文摘Smart healthcare applications depend on data from wearable sensors(WSs)mounted on a patient’s body for frequent monitoring information.Healthcare systems depend on multi-level data for detecting illnesses and consequently delivering correct diagnostic measures.The collection of WS data and integration of that data for diagnostic purposes is a difficult task.This paper proposes an Errorless Data Fusion(EDF)approach to increase posture recognition accuracy.The research is based on a case study in a health organization.With the rise in smart healthcare systems,WS data fusion necessitates careful attention to provide sensitive analysis of the recognized illness.As a result,it is dependent on WS inputs and performs group analysis at a similar rate to improve diagnostic efficiency.Sensor breakdowns,the constant time factor,aggregation,and analysis results all cause errors,resulting in rejected or incorrect suggestions.This paper resolves this problem by using EDF,which is related to patient situational discovery through healthcare surveillance systems.Features of WS data are examined extensively using active and iterative learning to identify errors in specific postures.This technology improves position detection accuracy,analysis duration,and error rate,regardless of user movements.Wearable devices play a critical role in the management and treatment of patients.They can ensure that patients are provided with a unique treatment for their medical needs.This paper discusses the EDF technique for optimizing posture identification accuracy through multi-feature analysis.At first,the patients’walking patterns are tracked at various time intervals.The characteristics are then evaluated in relation to the stored data using a random forest classifier.
文摘Hepatitis C is a contagious blood-borne infection,and it is mostly asymptomatic during the initial stages.Therefore,it is difficult to diagnose and treat patients in the early stages of infection.The disease’s progression to its last stages makes diagnosis and treatment more difficult.In this study,an AI system based on machine learning algorithms is presented to help healthcare professionals with an early diagnosis of hepatitis C.The dataset used for our Hep-Pred model is based on a literature study,and includes the records of 1385 patients infected with the hepatitis C virus.Patients in this dataset received treatment dosages for the hepatitis C virus for about 18 months.A former study divided the disease into four main stages.These stages have proven helpful for doctors to analyze the liver’s condition.The traditional way to check the staging is the biopsy,which is a painful and time-consuming process.This article aims to provide an effective and efficient approach to predict hepatitis C staging.For this purpose,the proposed technique uses a fine Gaussian SVM learning algorithm,providing 97.9%accurate results.
基金funding support for this work by the Department of Information Technology,College of Computer,Qassim University,Buraydah,Saudi Arabia.
文摘Flying ad hoc networks(FANETs)present a challenging environment due to the dynamic and highly mobile nature of the network.Dynamic network topology and uncertain node mobility structure of FANETs do not aim to consider only one path transmission.Several different techniques are adopted to address the issues arising in FANETs,from game theory to clustering to channel estimation and other statistical schemes.These approaches mostly employ traditional concepts for problem solutions.One of the novel approaches that provide simpler solutions to more complex problems is to use biologically inspired schemes.Several Nature-inspired schemes address cooperation and alliance which can be used to ensure connectivity among network nodes.One such species that resembles the dynamicity of FANETs are Bats.In this paper,the biologically inspired metaheuristic technique of the BAT Algorithm is proposed to present a routing protocol called iBATCOOP(Improved BAT Algorithm using Cooperation technique).We opt for the design implementation of the natural posture of bats to handle the necessary flying requirements.Moreover,we envision the concept of cooperative diversity using multiple relays and present an iBAT-COOP routing protocol for FANETs.This paper employs cooperation for an optimal route selection and reflects on distance,Signal to Noise Ratio(SNR),and link conditions to an efficient level to deal with FANET’s routing.By way of simulations,the performance of iBAT-COOP protocol outperforms BAT-FANET protocol and reduces packet loss ratio,end-to-end delay,and transmission loss by 81%,21%,and 82%respectively.Furthermore,the average link duration is improved by 25%compared to the BAT-FANET protocol.