Although computer architectures incorporate fast processing hardware resources, high performance real-time implementation of a complex control algorithm requires an efficient design and software coding of the algorith...Although computer architectures incorporate fast processing hardware resources, high performance real-time implementation of a complex control algorithm requires an efficient design and software coding of the algorithm so as to exploit special features of the hardware and avoid associated architecture shortcomings. This paper presents an investigation into the analysis and design mechanisms that will lead to reduction in the execution time in implementing real-time control algorithms. The proposed mechanisms are exemplified by means of one algorithm, which demonstrates their applicability to real-time applications. An active vibration control (AVC) algorithm for a flexible beam system simulated using the finite difference (FD) method is considered to demonstrate the effectiveness of the proposed methods. A comparative performance evaluation of the proposed design mechanisms is presented and discussed through a set of experiments.展开更多
The extreme operational environmental conditions and aging conditions of subsea structures pose a risk to their structural integrity and is critical to their safety.Nondestructive testing is essential to identify defe...The extreme operational environmental conditions and aging conditions of subsea structures pose a risk to their structural integrity and is critical to their safety.Nondestructive testing is essential to identify defects developing within the structure,allowing repair in a timely manner to mitigate against failures that cause damage to the environment and pose a hazard to human operators.However,to be cost effective,inspections must be carried out without taking the risers out of service.This poses significant safety risks if undertaken manually.This paper presents the development of an automated inspection system for flexible risers that are used to connect wellheads on the seafloor to the offshore production and storage facility.Due to the complex structure of risers,radiography is considered as the best technique to inspect multiple layers of the risers.However,radiography inspection,in turn,requires a robotic system for in-situ inspection with higher payload capacity,precise movement of source and detector which is able to withstand an extreme operational environment.The deployment of a radiography inspection system hasbeen achieved bydeveloping acustomized subsearobotic system called RiserSure that can provide precise scanning motion of a gamma ray source and digital detector moving in alignment.The prototype has been tested on a flexible riser during shallow water sea trials with the system placed around a riser by a remotely operated vehicle.The results from the trials show that the internal inner and outer tensile armor layer and defects in the riser can be successfully imaged in real operational conditions.展开更多
Shearography is an optical technique in the field of nondestructive evaluation(NDE)of various materials.Its main advantages are that it is noncontact type and can cover a large area in a single inspection.As a result,...Shearography is an optical technique in the field of nondestructive evaluation(NDE)of various materials.Its main advantages are that it is noncontact type and can cover a large area in a single inspection.As a result,although it has been widely acknowledged as an effective technique particularly for NDE of composite materials to detect subsurface defects such as delamination,disbond,cracks,and impact damages,the use of shearography for on-site inspection of wind turbine blades(WTBs)has not been reported.This is due to wind causing structural vibration in the WTB.The solution in this paper is to make the shearography sit on the WTB during inspection when the WTB is parked,so that the relative motion between the shearography and the WTB is minimized within the tolerance of the shearography system.The ultimate goal of the solution is to enable a robot-assisted shearography system to inspect the WTB on-site.This paper presents the research work on a new shearography design for integration with a robotic climber for on-site WTB inspection.The approach is tested and evaluated in experimental settings,and a comparative assessment of the approach with other robotic NDE techniques is carried out.The results demonstrate the potential benefits and suitability of the approach for on-site robotic inspection of WTBs.展开更多
Maintenance of wind turbine farms is a huge task,with associated significant risks and potential hazard to the safety and well-being of people who are responsible for carrying the tower inspection tasks.Periodic inspe...Maintenance of wind turbine farms is a huge task,with associated significant risks and potential hazard to the safety and well-being of people who are responsible for carrying the tower inspection tasks.Periodic inspections are required for wind turbine tower to ensure that the wind turbines are in full working order,with no signs of potential failure.Therefore,the development of an automated wind tower inspection system has been very cnucial for the overall performance of the renewable wind power generation industry.In order to determine the life span of the tower,an investigation of robot design is discussed in this paper.It presents how a mechanical spring-loaded climbing robot can be designed and constructed to climb and rotate 360°around the tower.An adjustable circular shape robot is designed that allows the device to fit in different diameters of the wind generator tower.The rotational module is designed to allow the wheels to rotate and be able to go in a circular motion.The design further incorporates a suspension that allows the robot to go through any obstacle.This paper also presents a finite element spring stress analy sis and Simulink control system model to find the optimal parameters that are required for the wind tower climbing robot.展开更多
Mobile robotics as an emerging technology is growing at a tremendous pace.This is due to the need for efficient execution of tasks in various service sectors rangi ng from domestic to public and industrial.The aging p...Mobile robotics as an emerging technology is growing at a tremendous pace.This is due to the need for efficient execution of tasks in various service sectors rangi ng from domestic to public and industrial.The aging population and the shortage of manpower to support this sector is one example of urgent need to look into development and deployment of such technology to support the elderly population.In this context,major issues to address and resolve include the coordination of actions to be taken by the robot in relation to the need/demand of the user,i.e.展开更多
文摘Although computer architectures incorporate fast processing hardware resources, high performance real-time implementation of a complex control algorithm requires an efficient design and software coding of the algorithm so as to exploit special features of the hardware and avoid associated architecture shortcomings. This paper presents an investigation into the analysis and design mechanisms that will lead to reduction in the execution time in implementing real-time control algorithms. The proposed mechanisms are exemplified by means of one algorithm, which demonstrates their applicability to real-time applications. An active vibration control (AVC) algorithm for a flexible beam system simulated using the finite difference (FD) method is considered to demonstrate the effectiveness of the proposed methods. A comparative performance evaluation of the proposed design mechanisms is presented and discussed through a set of experiments.
基金The authors acknowledge the support and funding provided by the European Union’s Horizon 2020 FTIPilot-2016-1 Fast Track to Innovation program under grant agreement No 730753 for the RiserSure project(Website:www.risersure.eu).
文摘The extreme operational environmental conditions and aging conditions of subsea structures pose a risk to their structural integrity and is critical to their safety.Nondestructive testing is essential to identify defects developing within the structure,allowing repair in a timely manner to mitigate against failures that cause damage to the environment and pose a hazard to human operators.However,to be cost effective,inspections must be carried out without taking the risers out of service.This poses significant safety risks if undertaken manually.This paper presents the development of an automated inspection system for flexible risers that are used to connect wellheads on the seafloor to the offshore production and storage facility.Due to the complex structure of risers,radiography is considered as the best technique to inspect multiple layers of the risers.However,radiography inspection,in turn,requires a robotic system for in-situ inspection with higher payload capacity,precise movement of source and detector which is able to withstand an extreme operational environment.The deployment of a radiography inspection system hasbeen achieved bydeveloping acustomized subsearobotic system called RiserSure that can provide precise scanning motion of a gamma ray source and digital detector moving in alignment.The prototype has been tested on a flexible riser during shallow water sea trials with the system placed around a riser by a remotely operated vehicle.The results from the trials show that the internal inner and outer tensile armor layer and defects in the riser can be successfully imaged in real operational conditions.
基金The work reported in this paper has been receiving funding from EU H2020 research and innovation programme under grant agreement No.780662.
文摘Shearography is an optical technique in the field of nondestructive evaluation(NDE)of various materials.Its main advantages are that it is noncontact type and can cover a large area in a single inspection.As a result,although it has been widely acknowledged as an effective technique particularly for NDE of composite materials to detect subsurface defects such as delamination,disbond,cracks,and impact damages,the use of shearography for on-site inspection of wind turbine blades(WTBs)has not been reported.This is due to wind causing structural vibration in the WTB.The solution in this paper is to make the shearography sit on the WTB during inspection when the WTB is parked,so that the relative motion between the shearography and the WTB is minimized within the tolerance of the shearography system.The ultimate goal of the solution is to enable a robot-assisted shearography system to inspect the WTB on-site.This paper presents the research work on a new shearography design for integration with a robotic climber for on-site WTB inspection.The approach is tested and evaluated in experimental settings,and a comparative assessment of the approach with other robotic NDE techniques is carried out.The results demonstrate the potential benefits and suitability of the approach for on-site robotic inspection of WTBs.
文摘Maintenance of wind turbine farms is a huge task,with associated significant risks and potential hazard to the safety and well-being of people who are responsible for carrying the tower inspection tasks.Periodic inspections are required for wind turbine tower to ensure that the wind turbines are in full working order,with no signs of potential failure.Therefore,the development of an automated wind tower inspection system has been very cnucial for the overall performance of the renewable wind power generation industry.In order to determine the life span of the tower,an investigation of robot design is discussed in this paper.It presents how a mechanical spring-loaded climbing robot can be designed and constructed to climb and rotate 360°around the tower.An adjustable circular shape robot is designed that allows the device to fit in different diameters of the wind generator tower.The rotational module is designed to allow the wheels to rotate and be able to go in a circular motion.The design further incorporates a suspension that allows the robot to go through any obstacle.This paper also presents a finite element spring stress analy sis and Simulink control system model to find the optimal parameters that are required for the wind tower climbing robot.
文摘Mobile robotics as an emerging technology is growing at a tremendous pace.This is due to the need for efficient execution of tasks in various service sectors rangi ng from domestic to public and industrial.The aging population and the shortage of manpower to support this sector is one example of urgent need to look into development and deployment of such technology to support the elderly population.In this context,major issues to address and resolve include the coordination of actions to be taken by the robot in relation to the need/demand of the user,i.e.