This paper proposes a multi-scale self-recovery(MSSR)approach to protect images against content forgery.The main idea is to provide more resistance against image tampering while enabling the recovery process in a mult...This paper proposes a multi-scale self-recovery(MSSR)approach to protect images against content forgery.The main idea is to provide more resistance against image tampering while enabling the recovery process in a multi-scale quality manner.In the proposed approach,the reference data composed of several parts and each part is protected by a channel coding rate according to its importance.The first part,which is used to reconstruct a rough approximation of the original image,is highly protected in order to resist against higher tampering rates.Other parts are protected with lower rates according to their importance leading to lower tolerable tampering rate(TTR),but the higher quality of the recovered images.The proposed MSSR approach is an efficient solution for the main disadvantage of the current methods,which either recover a tampered image in low tampering rates or fails when tampering rate is above the TTR value.The simulation results on 10000 test images represent the efficiency of the multi-scale self-recovery feature of the proposed approach in comparison with the existing methods.展开更多
We present an algorithm for image compression based on an image inpainting method. First the image regions that can be accurately recovered are located. Then, to reduce the data, information of such regions is removed...We present an algorithm for image compression based on an image inpainting method. First the image regions that can be accurately recovered are located. Then, to reduce the data, information of such regions is removed. The remaining data besides essential details for recovering tile removed regions are encoded to produce output data. At the decoder, an inpainting method is applied to retrieve removed regions using information extracted at the encoder. The image inpainting technique utilizes partial differential equations (PDEs) for recovering information. It is designed to achieve high performance in terms of image compres- sion criteria. This algorithm was examined for various images. A high compression ratio of 1:40 was achieved at an acceptable quality. Experimental results showed attainable visible quality improvement at a high compression ratio compared with JPEG.展开更多
We introduce a novel coarse ridge orientation smoothing algorithm based on orthogonal polynomials, which can be used to estimate the orientation field (OF) for fingerprint areas of no ridge information. This method do...We introduce a novel coarse ridge orientation smoothing algorithm based on orthogonal polynomials, which can be used to estimate the orientation field (OF) for fingerprint areas of no ridge information. This method does not need any base information of singular points (SPs). The algorithm uses a consecutive application of filtering-and model-based orientation smoothing methods. A Gaussian filter has been employed for the former. The latter conditionally employs one of the orthogonal polynomials such as Legendre and Chebyshev type I or II, based on the results obtained at the filtering-based stage. To evaluate our proposed method, a variety of exclusive fingerprint classification and minutiae-based matching experiments have been conducted on the fingerprint images of FVC2000 DB2, FVC2004 DB3 and DB4 databases. Results showed that our proposed method has achieved higher SP detection, classification, and verification performance as compared to competing methods.展开更多
文摘This paper proposes a multi-scale self-recovery(MSSR)approach to protect images against content forgery.The main idea is to provide more resistance against image tampering while enabling the recovery process in a multi-scale quality manner.In the proposed approach,the reference data composed of several parts and each part is protected by a channel coding rate according to its importance.The first part,which is used to reconstruct a rough approximation of the original image,is highly protected in order to resist against higher tampering rates.Other parts are protected with lower rates according to their importance leading to lower tolerable tampering rate(TTR),but the higher quality of the recovered images.The proposed MSSR approach is an efficient solution for the main disadvantage of the current methods,which either recover a tampered image in low tampering rates or fails when tampering rate is above the TTR value.The simulation results on 10000 test images represent the efficiency of the multi-scale self-recovery feature of the proposed approach in comparison with the existing methods.
文摘We present an algorithm for image compression based on an image inpainting method. First the image regions that can be accurately recovered are located. Then, to reduce the data, information of such regions is removed. The remaining data besides essential details for recovering tile removed regions are encoded to produce output data. At the decoder, an inpainting method is applied to retrieve removed regions using information extracted at the encoder. The image inpainting technique utilizes partial differential equations (PDEs) for recovering information. It is designed to achieve high performance in terms of image compres- sion criteria. This algorithm was examined for various images. A high compression ratio of 1:40 was achieved at an acceptable quality. Experimental results showed attainable visible quality improvement at a high compression ratio compared with JPEG.
文摘We introduce a novel coarse ridge orientation smoothing algorithm based on orthogonal polynomials, which can be used to estimate the orientation field (OF) for fingerprint areas of no ridge information. This method does not need any base information of singular points (SPs). The algorithm uses a consecutive application of filtering-and model-based orientation smoothing methods. A Gaussian filter has been employed for the former. The latter conditionally employs one of the orthogonal polynomials such as Legendre and Chebyshev type I or II, based on the results obtained at the filtering-based stage. To evaluate our proposed method, a variety of exclusive fingerprint classification and minutiae-based matching experiments have been conducted on the fingerprint images of FVC2000 DB2, FVC2004 DB3 and DB4 databases. Results showed that our proposed method has achieved higher SP detection, classification, and verification performance as compared to competing methods.