An IoT-based wireless sensor network(WSN)comprises many small sensors to collect the data and share it with the central repositories.These sensors are battery-driven and resource-restrained devices that consume most o...An IoT-based wireless sensor network(WSN)comprises many small sensors to collect the data and share it with the central repositories.These sensors are battery-driven and resource-restrained devices that consume most of the energy in sensing or collecting the data and transmitting it.During data sharing,security is an important concern in such networks as they are prone to many threats,of which the deadliest is the wormhole attack.These attacks are launched without acquiring the vital information of the network and they highly compromise the communication,security,and performance of the network.In the IoT-based network environment,its mitigation becomes more challenging because of the low resource availability in the sensing devices.We have performed an extensive literature study of the existing techniques against the wormhole attack and categorised them according to their methodology.The analysis of literature has motivated our research.In this paper,we developed the ESWI technique for detecting the wormhole attack while improving the performance and security.This algorithm has been designed to be simple and less complicated to avoid the overheads and the drainage of energy in its operation.The simulation results of our technique show competitive results for the detection rate and packet delivery ratio.It also gives an increased throughput,a decreased end-to-end delay,and a much-reduced consumption of energy.展开更多
The most valuable resource on the planet is no longer oil,but data.The transmission of this data securely over the internet is another challenge that comes with its ever-increasing value.In order to transmit sensitive...The most valuable resource on the planet is no longer oil,but data.The transmission of this data securely over the internet is another challenge that comes with its ever-increasing value.In order to transmit sensitive information securely,researchers are combining robust cryptography and steganographic approaches.The objective of this research is to introduce a more secure method of video steganography by using Deoxyribonucleic acid(DNA)for embedding encrypted data and an intelligent frame selection algorithm to improve video imperceptibility.In the previous approach,DNA was used only for frame selection.If this DNA is compromised,then our frames with the hidden and unencrypted data will be exposed.Moreover the frame selected in this way were random frames,and no consideration was made to the contents of frames.Hiding data in this way introduces visible artifacts in video.In the proposed approach rather than using DNA for frame selection we have created a fakeDNA out of our data and then embedded it in a video file on intelligently selected frames called the complex frames.Using chaotic maps and linear congruential generators,a unique pixel set is selected each time only from the identified complex frames,and encrypted data is embedded in these random locations.Experimental results demonstrate that the proposed technique shows minimum degradation of the stenographic video hence reducing the very first chances of visual surveillance.Further,the selection of complex frames for embedding and creation of a fake DNA as proposed in this research have higher peak signal-to-noise ratio(PSNR)and reduced mean squared error(MSE)values that indicate improved results.The proposed methodology has been implemented in Matlab.展开更多
Cloud-based SDN(Software Defined Network)integration offers new kinds of agility,flexibility,automation,and speed in the network.Enterprises and Cloud providers both leverage the benefits as networks can be configured...Cloud-based SDN(Software Defined Network)integration offers new kinds of agility,flexibility,automation,and speed in the network.Enterprises and Cloud providers both leverage the benefits as networks can be configured and optimized based on the application requirement.The integration of cloud and SDN paradigms has played an indispensable role in improving ubiquitous health care services.It has improved the real-time monitoring of patients by medical practitioners.Patients’data get stored at the central server on the cloud from where it is available to medical practitioners in no time.The centralisation of data on the server makes it more vulnerable to malicious attacks and causes a major threat to patients’privacy.In recent days,several schemes have been proposed to ensure the safety of patients’data.But most of the techniques still lack the practical implementation and safety of data.In this paper,a secure multi-factor authentication protocol using a hash function has been proposed.BAN(Body Area Network)logic has been used to formally analyse the proposed scheme and ensure that no unauthenticated user can steal sensitivepatient information.Security Protocol Animator(SPAN)–Automated Validation of Internet Security Protocols and Applications(AVISPA)tool has been used for simulation.The results prove that the proposed scheme ensures secure access to the database in terms of spoofing and identification.Performance comparisons of the proposed scheme with other related historical schemes regarding time complexity,computation cost which accounts to only 423 ms in proposed,and security parameters such as identification and spoofing prove its efficiency.展开更多
Web crawlers have evolved from performing a meagre task of collecting statistics,security testing,web indexing and numerous other examples.The size and dynamism of the web are making crawling an interesting and challe...Web crawlers have evolved from performing a meagre task of collecting statistics,security testing,web indexing and numerous other examples.The size and dynamism of the web are making crawling an interesting and challenging task.Researchers have tackled various issues and challenges related to web crawling.One such issue is efficiently discovering hidden web data.Web crawler’s inability to work with form-based data,lack of benchmarks and standards for both performance measures and datasets for evaluation of the web crawlers make it still an immature research domain.The applications like vertical portals and data integration require hidden web crawling.Most of the existing methods are based on returning top k matches that makes exhaustive crawling difficult.The documents which are ranked high will be returned multiple times.The low ranked documents have slim chances of being retrieved.Discovering the hidden web sources and ranking them based on relevance is a core component of hidden web crawlers.The problem of ranking bias,heuristic approach and saturation of ranking algorithm led to low coverage.This research represents an enhanced ranking algorithm based on the triplet formula for prioritizing hidden websites to increase the coverage of the hidden web crawler.展开更多
Sleep apnea syndrome(SAS)is a breathing disorder while a person is asleep.The traditional method for examining SAS is Polysomnography(PSG).The standard procedure of PSG requires complete overnight observation in a lab...Sleep apnea syndrome(SAS)is a breathing disorder while a person is asleep.The traditional method for examining SAS is Polysomnography(PSG).The standard procedure of PSG requires complete overnight observation in a laboratory.PSG typically provides accurate results,but it is expensive and time consuming.However,for people with Sleep apnea(SA),available beds and laboratories are limited.Resultantly,it may produce inaccurate diagnosis.Thus,this paper proposes the Internet of Medical Things(IoMT)framework with a machine learning concept of fully connected neural network(FCNN)with k-near-est neighbor(k-NN)classifier.This paper describes smart monitoring of a patient’s sleeping habit and diagnosis of SA using FCNN-KNN+average square error(ASE).For diagnosing SA,the Oxygen saturation(SpO2)sensor device is popularly used for monitoring the heart rate and blood oxygen level.This diagnosis information is securely stored in the IoMT fog computing network.Doctors can care-fully monitor the SA patient remotely on the basis of sensor values,which are efficiently stored in the fog computing network.The proposed technique takes less than 0.2 s with an accuracy of 95%,which is higher than existing models.展开更多
Diagnosing data or object detection in medical images is one of the important parts of image segmentation especially those data which is less effective to identify inMRI such as low-grade tumors or cerebral spinal flu...Diagnosing data or object detection in medical images is one of the important parts of image segmentation especially those data which is less effective to identify inMRI such as low-grade tumors or cerebral spinal fluid(CSF)leaks in the brain.The aim of the study is to address the problems associated with detecting the low-grade tumor and CSF in brain is difficult in magnetic resonance imaging(MRI)images and another problem also relates to efficiency and less execution time for segmentation of medical images.For tumor and CSF segmentation using trained light field database(LFD)datasets of MRI images.This research proposed the new framework of the hybrid k-Nearest Neighbors(k-NN)model that is a combination of hybridization of Graph Cut and Support Vector Machine(GCSVM)and Hidden Markov Model of k-Mean Clustering Algorithm(HMMkC).There are four different methods are used in this research namely(1)SVM,(2)GrabCut segmentation,(3)HMM,and(4)k-mean clustering algorithm.In this framework,on the one hand,phase one is to perform the classification of SVM and Graph Cut algorithm to create the maximum margin distance.This research use GrabCut segmentation method which is the application of the graph cut algorithm and extract the data with the help of scaleinvariant features transform.On the other hand,in phase two,segment the low-grade tumors and CSF using a method adapted for HMkC and extract the information of tumor or CSF fluid by GCHMkC including iterative conditional maximizing mode(ICMM)with identifying the range of distant.Comparative evaluation is also performing by the comparison of existing techniques in this research.In conclusion,our proposed model gives better results than existing.This proposed model helps to common man and doctor that can identify their condition of brain easily.In future,this will model will use for other brain related diseases.展开更多
Numerous Internet of Things(IoT)systems produce massive volumes of information that must be handled and answered in a quite short period.The growing energy usage related to the migration of data into the cloud is one ...Numerous Internet of Things(IoT)systems produce massive volumes of information that must be handled and answered in a quite short period.The growing energy usage related to the migration of data into the cloud is one of the biggest problems.Edge computation helps users unload the workload again from cloud near the source of the information that must be handled to save time,increase security,and reduce the congestion of networks.Therefore,in this paper,Optimized Energy Efficient Strategy(OEES)has been proposed for extracting,distributing,evaluating the data on the edge devices.In the initial stage of OEES,before the transmission state,the data gathered from edge devices are supported by a fast error like reduction that is regarded as the largest energy user of an IoT system.The initial stage is followed by the reconstructing and the processing state.The processed data is transmitted to the nodes through controlled deep learning techniques.The entire stage of data collection,transmission and data reduction between edge devices uses less energy.The experimental results indicate that the volume of data transferred decreases and does not impact the professional data performance and predictive accuracy.Energy consumption of 7.38 KJ and energy conservation of 55.57 kJ was found in the proposed OEES scheme.Predictive accuracy is 97.5 percent,data performance rate was 97.65 percent,and execution time is 14.49 ms.展开更多
Medical Imaging Segmentation is an essential technique for modern medical applications.It is the foundation of many aspects of clinical diagnosis,oncology,and computer-integrated surgical intervention.Although signifi...Medical Imaging Segmentation is an essential technique for modern medical applications.It is the foundation of many aspects of clinical diagnosis,oncology,and computer-integrated surgical intervention.Although significant successes have been achieved in the segmentation of medical images,DL(deep learning)approaches.Manual delineation of OARs(organs at risk)is vastly dominant but it is prone to errors given the complex irregularities in shape,low texture diversity between tissues and adjacent blood area,patientwide location of organisms,and weak soft tissue contrast across adjacent organs in CT images.Till now several models have been implemented onmulti organs segmentation but not caters to the problemof imbalanced classes some organs have relatively small pixels as compared to others.To segment OARs in thoracic CT images,we proposed the model based on the encoder-decoder approach using transfer learning with the efficientnetB7 DL model.We have built a fully connected CNN(Convolutional Neural network)having 5 layers of encoding and 5 layers of decoding with efficientnetB7 specifically to tackle imbalance class pixels in an accurate way for the segmentation of OARs.Proposed methodology achieves 0.93405 IOU score,0.95138 F1 score and class-wise dice score for esophagus 0.92466,trachea 0.94257,heart 0.95038,aorta 0.9351 and background 0.99891.The results showed that our proposed framework can be segmented organs accurately.展开更多
The Internet of Medical Things(IoMT)is an online device that senses and transmits medical data from users to physicians within a time interval.In,recent years,IoMT has rapidly grown in the medicalfield to provide heal...The Internet of Medical Things(IoMT)is an online device that senses and transmits medical data from users to physicians within a time interval.In,recent years,IoMT has rapidly grown in the medicalfield to provide healthcare services without physical appearance.With the use of sensors,IoMT applications are used in healthcare management.In such applications,one of the most important factors is data security,given that its transmission over the network may cause obtrusion.For data security in IoMT systems,blockchain is used due to its numerous blocks for secure data storage.In this study,Blockchain-assisted secure data management framework(BSDMF)and Proof of Activity(PoA)protocol using malicious code detection algorithm is used in the proposed data security for the healthcare system.The main aim is to enhance the data security over the networks.The PoA protocol enhances high security of data from the literature review.By replacing the malicious node from the block,the PoA can provide high security for medical data in the blockchain.Comparison with existing systems shows that the proposed simulation with BSD-Malicious code detection algorithm achieves higher accuracy ratio,precision ratio,security,and efficiency and less response time for Blockchain-enabled healthcare systems.展开更多
Breast cancer is one of the leading cancers among women.It has the second-highest mortality rate in women after lung cancer.Timely detection,especially in the early stages,can help increase survival rates.However,manu...Breast cancer is one of the leading cancers among women.It has the second-highest mortality rate in women after lung cancer.Timely detection,especially in the early stages,can help increase survival rates.However,manual diagnosis of breast cancer is a tedious and time-consuming process,and the accuracy of detection is reliant on the quality of the images and the radiologist’s experience.However,computer-aided medical diagnosis has recently shown promising results,leading to the need to develop an efficient system that can aid radiologists in diagnosing breast cancer in its early stages.The research presented in this paper is focused on the multi-class classification of breast cancer.The deep transfer learning approach has been utilized to train the deep learning models,and a pre-processing technique has been used to improve the quality of the ultrasound dataset.The proposed technique utilizes two deep learning models,Mobile-NetV2 and DenseNet201,for the composition of the deep ensemble model.Deep learning models are fine-tuned along with hyperparameter tuning to achieve better results.Subsequently,entropy-based feature selection is used.Breast cancer identification using the proposed classification approach was found to attain an accuracy of 97.04%,while the sensitivity and F1 score were 96.87%and 96.76%,respectively.The performance of the proposed model is very effective and outperforms other state-of-the-art techniques presented in the literature.展开更多
Massive-Multiple Inputs and Multiple Outputs(M-MIMO)is considered as one of the standard techniques in improving the performance of Fifth Generation(5G)radio.5G signal detection with low propagation delay and high thr...Massive-Multiple Inputs and Multiple Outputs(M-MIMO)is considered as one of the standard techniques in improving the performance of Fifth Generation(5G)radio.5G signal detection with low propagation delay and high throughput with minimum computational intricacy are some of the serious concerns in the deployment of 5G.The evaluation of 5G promises a high quality of service(QoS),a high data rate,low latency,and spectral efficiency,ensuring several applications that will improve the services in every sector.The existing detection techniques cannot be utilised in 5G and beyond 5G due to the high complexity issues in their implementation.In the proposed article,the Approximation Message Passing(AMP)is implemented and compared with the existing Minimum Mean Square Error(MMSE)and Message Passing Detector(MPD)algorithms.The outcomes of the work show that the performance of Bit Error Rate(BER)is improved with minimal complexity.展开更多
The world health organization(WHO)terms dengue as a serious illness that impacts almost half of the world’s population and carries no specific treatment.Early and accurate detection of spread in affected regions can ...The world health organization(WHO)terms dengue as a serious illness that impacts almost half of the world’s population and carries no specific treatment.Early and accurate detection of spread in affected regions can save precious lives.Despite the severity of the disease,a few noticeable works can be found that involve sentiment analysis to mine accurate intuitions from the social media text streams.However,the massive data explosion in recent years has led to difficulties in terms of storing and processing large amounts of data,as reliable mechanisms to gather the data and suitable techniques to extract meaningful insights from the data are required.This research study proposes a sentiment analysis polarity approach for collecting data and extracting relevant information about dengue via Apache Hadoop.The method consists of two main parts:the first part collects data from social media using Apache Flume,while the second part focuses on querying and extracting relevant information via the hybrid filtration-polarity algorithm using Apache Hive.To overcome the noisy and unstructured nature of the data,the process of extracting information is characterized by pre and post-filtration phases.As a result,only with the integration of Flume and Hive with filtration and polarity analysis,can a reliable sentiment analysis technique be offered to collect and process large-scale data from the social network.We introduce how the Apache Hadoop ecosystem–Flume and Hive–can provide a sentiment analysis capability by storing and processing large amounts of data.An important finding of this paper is that developing efficient sentiment analysis applications for detecting diseases can be more reliable through the use of the Hadoop ecosystem components than through the use of normal machines.展开更多
Organizational and end user data breaches are highly implicated by the role of information security conscious care behavior in respective incident responses.This research study draws upon the literature in the areas o...Organizational and end user data breaches are highly implicated by the role of information security conscious care behavior in respective incident responses.This research study draws upon the literature in the areas of information security,incident response,theory of planned behaviour,and protection motivation theory to expand and empirically validate a modified framework of information security conscious care behaviour formation.The applicability of the theoretical framework is shown through a case study labelled as a cyber-attack of unprecedented scale and sophistication in Singapore’s history to-date,the 2018 SingHealth data breach.The single in-depth case study observed information security awareness,policy,experience,attitude,subjective norms,perceived behavioral control,threat appraisal and self-efficacy as emerging prominently in the framework’s applicability in incident handling.The data analysis did not support threat severity relationship with conscious care behaviour.The findings from the above-mentioned observations are presented as possible key drivers in the shaping information security conscious care behaviour in real-world cyber incident management.展开更多
文摘An IoT-based wireless sensor network(WSN)comprises many small sensors to collect the data and share it with the central repositories.These sensors are battery-driven and resource-restrained devices that consume most of the energy in sensing or collecting the data and transmitting it.During data sharing,security is an important concern in such networks as they are prone to many threats,of which the deadliest is the wormhole attack.These attacks are launched without acquiring the vital information of the network and they highly compromise the communication,security,and performance of the network.In the IoT-based network environment,its mitigation becomes more challenging because of the low resource availability in the sensing devices.We have performed an extensive literature study of the existing techniques against the wormhole attack and categorised them according to their methodology.The analysis of literature has motivated our research.In this paper,we developed the ESWI technique for detecting the wormhole attack while improving the performance and security.This algorithm has been designed to be simple and less complicated to avoid the overheads and the drainage of energy in its operation.The simulation results of our technique show competitive results for the detection rate and packet delivery ratio.It also gives an increased throughput,a decreased end-to-end delay,and a much-reduced consumption of energy.
基金Taif University Researchers Supporting Project number(TURSP-2020/98),Taif University,Taif,Saudi Arabia.
文摘The most valuable resource on the planet is no longer oil,but data.The transmission of this data securely over the internet is another challenge that comes with its ever-increasing value.In order to transmit sensitive information securely,researchers are combining robust cryptography and steganographic approaches.The objective of this research is to introduce a more secure method of video steganography by using Deoxyribonucleic acid(DNA)for embedding encrypted data and an intelligent frame selection algorithm to improve video imperceptibility.In the previous approach,DNA was used only for frame selection.If this DNA is compromised,then our frames with the hidden and unencrypted data will be exposed.Moreover the frame selected in this way were random frames,and no consideration was made to the contents of frames.Hiding data in this way introduces visible artifacts in video.In the proposed approach rather than using DNA for frame selection we have created a fakeDNA out of our data and then embedded it in a video file on intelligently selected frames called the complex frames.Using chaotic maps and linear congruential generators,a unique pixel set is selected each time only from the identified complex frames,and encrypted data is embedded in these random locations.Experimental results demonstrate that the proposed technique shows minimum degradation of the stenographic video hence reducing the very first chances of visual surveillance.Further,the selection of complex frames for embedding and creation of a fake DNA as proposed in this research have higher peak signal-to-noise ratio(PSNR)and reduced mean squared error(MSE)values that indicate improved results.The proposed methodology has been implemented in Matlab.
基金Taif University Researchers Supporting Project number(TURSP-2020/98),Taif University,Taif,Saudi Arabia。
文摘Cloud-based SDN(Software Defined Network)integration offers new kinds of agility,flexibility,automation,and speed in the network.Enterprises and Cloud providers both leverage the benefits as networks can be configured and optimized based on the application requirement.The integration of cloud and SDN paradigms has played an indispensable role in improving ubiquitous health care services.It has improved the real-time monitoring of patients by medical practitioners.Patients’data get stored at the central server on the cloud from where it is available to medical practitioners in no time.The centralisation of data on the server makes it more vulnerable to malicious attacks and causes a major threat to patients’privacy.In recent days,several schemes have been proposed to ensure the safety of patients’data.But most of the techniques still lack the practical implementation and safety of data.In this paper,a secure multi-factor authentication protocol using a hash function has been proposed.BAN(Body Area Network)logic has been used to formally analyse the proposed scheme and ensure that no unauthenticated user can steal sensitivepatient information.Security Protocol Animator(SPAN)–Automated Validation of Internet Security Protocols and Applications(AVISPA)tool has been used for simulation.The results prove that the proposed scheme ensures secure access to the database in terms of spoofing and identification.Performance comparisons of the proposed scheme with other related historical schemes regarding time complexity,computation cost which accounts to only 423 ms in proposed,and security parameters such as identification and spoofing prove its efficiency.
基金Taif University Researchers Supporting Project number(TURSP-2020/98),Taif University,Taif,Saudi Arabia.
文摘Web crawlers have evolved from performing a meagre task of collecting statistics,security testing,web indexing and numerous other examples.The size and dynamism of the web are making crawling an interesting and challenging task.Researchers have tackled various issues and challenges related to web crawling.One such issue is efficiently discovering hidden web data.Web crawler’s inability to work with form-based data,lack of benchmarks and standards for both performance measures and datasets for evaluation of the web crawlers make it still an immature research domain.The applications like vertical portals and data integration require hidden web crawling.Most of the existing methods are based on returning top k matches that makes exhaustive crawling difficult.The documents which are ranked high will be returned multiple times.The low ranked documents have slim chances of being retrieved.Discovering the hidden web sources and ranking them based on relevance is a core component of hidden web crawlers.The problem of ranking bias,heuristic approach and saturation of ranking algorithm led to low coverage.This research represents an enhanced ranking algorithm based on the triplet formula for prioritizing hidden websites to increase the coverage of the hidden web crawler.
基金Taif University Researchers Supporting Project Number(TURSP-2020/98),Taif University,Taif,Saudi Arabia.
文摘Sleep apnea syndrome(SAS)is a breathing disorder while a person is asleep.The traditional method for examining SAS is Polysomnography(PSG).The standard procedure of PSG requires complete overnight observation in a laboratory.PSG typically provides accurate results,but it is expensive and time consuming.However,for people with Sleep apnea(SA),available beds and laboratories are limited.Resultantly,it may produce inaccurate diagnosis.Thus,this paper proposes the Internet of Medical Things(IoMT)framework with a machine learning concept of fully connected neural network(FCNN)with k-near-est neighbor(k-NN)classifier.This paper describes smart monitoring of a patient’s sleeping habit and diagnosis of SA using FCNN-KNN+average square error(ASE).For diagnosing SA,the Oxygen saturation(SpO2)sensor device is popularly used for monitoring the heart rate and blood oxygen level.This diagnosis information is securely stored in the IoMT fog computing network.Doctors can care-fully monitor the SA patient remotely on the basis of sensor values,which are efficiently stored in the fog computing network.The proposed technique takes less than 0.2 s with an accuracy of 95%,which is higher than existing models.
文摘Diagnosing data or object detection in medical images is one of the important parts of image segmentation especially those data which is less effective to identify inMRI such as low-grade tumors or cerebral spinal fluid(CSF)leaks in the brain.The aim of the study is to address the problems associated with detecting the low-grade tumor and CSF in brain is difficult in magnetic resonance imaging(MRI)images and another problem also relates to efficiency and less execution time for segmentation of medical images.For tumor and CSF segmentation using trained light field database(LFD)datasets of MRI images.This research proposed the new framework of the hybrid k-Nearest Neighbors(k-NN)model that is a combination of hybridization of Graph Cut and Support Vector Machine(GCSVM)and Hidden Markov Model of k-Mean Clustering Algorithm(HMMkC).There are four different methods are used in this research namely(1)SVM,(2)GrabCut segmentation,(3)HMM,and(4)k-mean clustering algorithm.In this framework,on the one hand,phase one is to perform the classification of SVM and Graph Cut algorithm to create the maximum margin distance.This research use GrabCut segmentation method which is the application of the graph cut algorithm and extract the data with the help of scaleinvariant features transform.On the other hand,in phase two,segment the low-grade tumors and CSF using a method adapted for HMkC and extract the information of tumor or CSF fluid by GCHMkC including iterative conditional maximizing mode(ICMM)with identifying the range of distant.Comparative evaluation is also performing by the comparison of existing techniques in this research.In conclusion,our proposed model gives better results than existing.This proposed model helps to common man and doctor that can identify their condition of brain easily.In future,this will model will use for other brain related diseases.
基金The authors would like to thank for the support from Taif University Researchers Supporting Project number(TURSP-2020/98),Taif University,Taif,Saudi Arabia.
文摘Numerous Internet of Things(IoT)systems produce massive volumes of information that must be handled and answered in a quite short period.The growing energy usage related to the migration of data into the cloud is one of the biggest problems.Edge computation helps users unload the workload again from cloud near the source of the information that must be handled to save time,increase security,and reduce the congestion of networks.Therefore,in this paper,Optimized Energy Efficient Strategy(OEES)has been proposed for extracting,distributing,evaluating the data on the edge devices.In the initial stage of OEES,before the transmission state,the data gathered from edge devices are supported by a fast error like reduction that is regarded as the largest energy user of an IoT system.The initial stage is followed by the reconstructing and the processing state.The processed data is transmitted to the nodes through controlled deep learning techniques.The entire stage of data collection,transmission and data reduction between edge devices uses less energy.The experimental results indicate that the volume of data transferred decreases and does not impact the professional data performance and predictive accuracy.Energy consumption of 7.38 KJ and energy conservation of 55.57 kJ was found in the proposed OEES scheme.Predictive accuracy is 97.5 percent,data performance rate was 97.65 percent,and execution time is 14.49 ms.
基金Taif University Researchers Supporting Project number(TURSP-2020/98),Taif University,Taif,Saudi Arabia.
文摘Medical Imaging Segmentation is an essential technique for modern medical applications.It is the foundation of many aspects of clinical diagnosis,oncology,and computer-integrated surgical intervention.Although significant successes have been achieved in the segmentation of medical images,DL(deep learning)approaches.Manual delineation of OARs(organs at risk)is vastly dominant but it is prone to errors given the complex irregularities in shape,low texture diversity between tissues and adjacent blood area,patientwide location of organisms,and weak soft tissue contrast across adjacent organs in CT images.Till now several models have been implemented onmulti organs segmentation but not caters to the problemof imbalanced classes some organs have relatively small pixels as compared to others.To segment OARs in thoracic CT images,we proposed the model based on the encoder-decoder approach using transfer learning with the efficientnetB7 DL model.We have built a fully connected CNN(Convolutional Neural network)having 5 layers of encoding and 5 layers of decoding with efficientnetB7 specifically to tackle imbalance class pixels in an accurate way for the segmentation of OARs.Proposed methodology achieves 0.93405 IOU score,0.95138 F1 score and class-wise dice score for esophagus 0.92466,trachea 0.94257,heart 0.95038,aorta 0.9351 and background 0.99891.The results showed that our proposed framework can be segmented organs accurately.
基金Taif University Researchers Supporting Project Number(TURSP-2020/98),Taif University,Taif,Saudi Arabia.
文摘The Internet of Medical Things(IoMT)is an online device that senses and transmits medical data from users to physicians within a time interval.In,recent years,IoMT has rapidly grown in the medicalfield to provide healthcare services without physical appearance.With the use of sensors,IoMT applications are used in healthcare management.In such applications,one of the most important factors is data security,given that its transmission over the network may cause obtrusion.For data security in IoMT systems,blockchain is used due to its numerous blocks for secure data storage.In this study,Blockchain-assisted secure data management framework(BSDMF)and Proof of Activity(PoA)protocol using malicious code detection algorithm is used in the proposed data security for the healthcare system.The main aim is to enhance the data security over the networks.The PoA protocol enhances high security of data from the literature review.By replacing the malicious node from the block,the PoA can provide high security for medical data in the blockchain.Comparison with existing systems shows that the proposed simulation with BSD-Malicious code detection algorithm achieves higher accuracy ratio,precision ratio,security,and efficiency and less response time for Blockchain-enabled healthcare systems.
基金This research work was funded by Institutional Fund Projects under Grant No.(IFPIP:1614-611-1442)from the Ministry of Education and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.
文摘Breast cancer is one of the leading cancers among women.It has the second-highest mortality rate in women after lung cancer.Timely detection,especially in the early stages,can help increase survival rates.However,manual diagnosis of breast cancer is a tedious and time-consuming process,and the accuracy of detection is reliant on the quality of the images and the radiologist’s experience.However,computer-aided medical diagnosis has recently shown promising results,leading to the need to develop an efficient system that can aid radiologists in diagnosing breast cancer in its early stages.The research presented in this paper is focused on the multi-class classification of breast cancer.The deep transfer learning approach has been utilized to train the deep learning models,and a pre-processing technique has been used to improve the quality of the ultrasound dataset.The proposed technique utilizes two deep learning models,Mobile-NetV2 and DenseNet201,for the composition of the deep ensemble model.Deep learning models are fine-tuned along with hyperparameter tuning to achieve better results.Subsequently,entropy-based feature selection is used.Breast cancer identification using the proposed classification approach was found to attain an accuracy of 97.04%,while the sensitivity and F1 score were 96.87%and 96.76%,respectively.The performance of the proposed model is very effective and outperforms other state-of-the-art techniques presented in the literature.
基金supported by Taif University Researchers Supporting Project Number(TURSP-2020/98)Taif University,Taif,Saudi Arabia.
文摘Massive-Multiple Inputs and Multiple Outputs(M-MIMO)is considered as one of the standard techniques in improving the performance of Fifth Generation(5G)radio.5G signal detection with low propagation delay and high throughput with minimum computational intricacy are some of the serious concerns in the deployment of 5G.The evaluation of 5G promises a high quality of service(QoS),a high data rate,low latency,and spectral efficiency,ensuring several applications that will improve the services in every sector.The existing detection techniques cannot be utilised in 5G and beyond 5G due to the high complexity issues in their implementation.In the proposed article,the Approximation Message Passing(AMP)is implemented and compared with the existing Minimum Mean Square Error(MMSE)and Message Passing Detector(MPD)algorithms.The outcomes of the work show that the performance of Bit Error Rate(BER)is improved with minimal complexity.
基金Taif University Researchers Supporting Project number(TURSP-2020/98).
文摘The world health organization(WHO)terms dengue as a serious illness that impacts almost half of the world’s population and carries no specific treatment.Early and accurate detection of spread in affected regions can save precious lives.Despite the severity of the disease,a few noticeable works can be found that involve sentiment analysis to mine accurate intuitions from the social media text streams.However,the massive data explosion in recent years has led to difficulties in terms of storing and processing large amounts of data,as reliable mechanisms to gather the data and suitable techniques to extract meaningful insights from the data are required.This research study proposes a sentiment analysis polarity approach for collecting data and extracting relevant information about dengue via Apache Hadoop.The method consists of two main parts:the first part collects data from social media using Apache Flume,while the second part focuses on querying and extracting relevant information via the hybrid filtration-polarity algorithm using Apache Hive.To overcome the noisy and unstructured nature of the data,the process of extracting information is characterized by pre and post-filtration phases.As a result,only with the integration of Flume and Hive with filtration and polarity analysis,can a reliable sentiment analysis technique be offered to collect and process large-scale data from the social network.We introduce how the Apache Hadoop ecosystem–Flume and Hive–can provide a sentiment analysis capability by storing and processing large amounts of data.An important finding of this paper is that developing efficient sentiment analysis applications for detecting diseases can be more reliable through the use of the Hadoop ecosystem components than through the use of normal machines.
基金Taif University Researchers Supporting Project number(TURSP-2020/98).
文摘Organizational and end user data breaches are highly implicated by the role of information security conscious care behavior in respective incident responses.This research study draws upon the literature in the areas of information security,incident response,theory of planned behaviour,and protection motivation theory to expand and empirically validate a modified framework of information security conscious care behaviour formation.The applicability of the theoretical framework is shown through a case study labelled as a cyber-attack of unprecedented scale and sophistication in Singapore’s history to-date,the 2018 SingHealth data breach.The single in-depth case study observed information security awareness,policy,experience,attitude,subjective norms,perceived behavioral control,threat appraisal and self-efficacy as emerging prominently in the framework’s applicability in incident handling.The data analysis did not support threat severity relationship with conscious care behaviour.The findings from the above-mentioned observations are presented as possible key drivers in the shaping information security conscious care behaviour in real-world cyber incident management.